DOI: https://doi.org/10.21897/rmvz.1237

El efecto de los polímeros absorbentes en la actividad microbiologica del suelo bajo condiciones mediterráneas

The effect of Hydropolymers on soil microbial activities in Mediterranean areas

Helena Dvořáčková, Paloma Hueso González, Jaroslav Záhora, RS Ruiz Sinoga

Resumen


Objetivo. El objetivo de este estudio pasa por evaluar el efecto del-Terracottem- en la actividad microbiana del suelo mediante la medida de la respiración edáfica y la pérdida de nitrógeno mineral por lixiviación. El ensayo se ha realizado en condiciones de laboratorio controladas y con suelos naturales. Materiales y metodos. Para el experimento, se han diseñado varios tratamientos: i) suelos naturales a los que se les ha adicionado compuestos nitrogenados de libre disponibilidad (Kg N ha-1); ii) suelos naturales a los que se les ha adicionado carbohidratos de libre disponibilidad (1% de solución de glucosa); iii) suelos naturales a los que se les ha adicionado una mezcla de compuestos nitrogenados de libre disponibilidad (Kg N ha-1) con carbohidratos (1% de solución de glucosa). En cada variante se han testeado diferentes dosis del polímero. Resultados. Los resultados han demostrado que la actividad respiratoria del suelo es independiente de la disponibilidad de compuestos como el nitrógeno o carbono. Tampoco se han observado diferencias significativas entre las diferentes dosis del polímero. Por el contrario, si se observaron diferencias en la producción de CO2. Conclusiones. La lixiviación únicamente se producía cuando los suelos era enmendado con compuestos únicamente nitrogenados o únicamente sólo carbonosos.


Palabras clave


acondicionador de suelos; respiración; lixiviados; Terracottem; nitrogeno

Texto completo:

PDF

Referencias


Hueso-González P, Ruiz-Sinoga R S, Martínez-Murillo J, Lavee H. Overland flow generation mechanisms affected by topsoil treatment: Application to soil conservation. Geomorphology 2015; 228:796–804. https://doi.org/10.1016/j.geomorph.2014.10.033

Sheoran V, Sheoran AS, Poonia P. Soil Reclamation of Abandoned Mine Land by Revegetation: A Review. International Journal of Soil, Sediment and Water 2010; 3(2):13.

Jeffries L, Peter D. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 2003; 37:1–16.

Jiménez MN, Fernández-Ondo-o E, Ripoll MA, Castro-Rodríguez J, Huntsinger L, Bruno Navarro F. Stones and organic mulches improve the Quercus ilex L. afforestation success under Mediterranean climatic conditions. Land. Degrad. Dev 2013; 27:357–365. https://doi.org/10.1002/ldr.2250

Perring M P, Standish R J, Price J N, Craig M D, Erickson T E, Ruthrof K X, Whiteley A S. Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere 2015; 6:1–25. https://doi.org/10.1890/ES15-00121.1

Macci C, Doni S, Peruzzi G E, Masciandaro C, Mennone C, Ceccanti B. Almond tree and organic fertilization for soil quality improvement in southern Italy. J Environ Manage 2012; 95(S2):215–222. https://doi.org/10.1016/j.jenvman.2010.10.050

Chaudhuri S, McDonald L M, Skousen J, Pena-Yewtukhiw E M. Soil organic carbon molecular properties: effects of time since reclamation in a minesoil chronosequence. Land Degrad Dev 2013; 26:237–248. https://doi.org/10.1002/ldr.2202

Johansson I, Karlsson I M, Shukla V K, Chrispeels M J, Larsson C, Kjellbom P. Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. The Plant Cell 1989; 10(3):451–459. https://doi.org/10.1105/tpc.10.3.451

Danneels P and Van Cotthem W. The effect of a soil conditioning mixture on plant growth: Some experiments in pots. Belgian Journal of Botany 1994; 25:17–25.

Brevik EC, Cerdà A, Mataix-Solera J, Pereg L, Quinton J N, Six K J. The interdisciplinary nature of SOIL. SOIL 2015; 1:117–129. https://doi.org/10.5194/soil-1-117-2015

Callaghan TV, Abdelnour H, Lindley DK. The environmental crisis in the Sudan: the effect of water-absorbing synthetic polymers on tree germination and early survival. Journal of Arid Environments 1988; 14(3):301–317.

Ghani A, McLaren R G, Swift R S. The incorporation and transformations of 35 S in soil: effects of soil conditioning and glucose or sulphate additions. Soil Biology and Biochemistry 1993; 25(3):327–335. https://doi.org/10.1016/0038-0717(93)90131-T

Keith H, Wong S C. Measurement of soil CO 2 efflux using soda lime absorption: both quantitative and reliable. Soil Biology and Biochemistry 2006; 38(5):1121–1131. https://doi.org/10.1016/j.soilbio.2005.09.012

Kinsbursky R S, and Saltzman S. CO2-nitrification relationships in closed soil incubation vessels. Soil Biology and Biochemistry 1990; 22(4):571–572. https://doi.org/10.1016/0038-0717(90)90195-6

Binkley D, and Matson P. Ion exchange resin bag method for assessing forest soil nitrogen availability. Soil Science Society of America Journal 1983; 47:1050–1052. https://doi.org/10.2136/sssaj1983.03615995004700050045x

McGuire K L, and Treseder K K. Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biology and Biochemistry 2010; 42(4):529–535. https://doi.org/10.1016/j.soilbio.2009.11.016

Unger S, Máguas C, Pereira J S, David T S, Werner C. The influence of precipitation pulses on soil respiration–Assessing the "Birch effect" by stable carbon isotopes. Soil Biology and Biochemistry 2010;42(10):1800–1810. https://doi.org/10.1016/j.soilbio.2010.06.019

Bohnert D W, Del Curto T, Clark A A, Merrill M L, Falck S J, Harmon D L. Protein supplementation of ruminants consuming low-quality cool-or warm-season forage: Differences in intake and digestibility. Journal of animal science 2011; 89:3707–3717. https://doi.org/10.2527/jas.2011-3915

Li Y, Liu Y, Wu S, Niu L, Tian Y. Microbial properties explain temporal variation in soil respiration in a grassland subjected to nitrogen addition. Scientific reports, 5;2015

Bond-Lamberty B, Bolton B H, Fansler S, Heredia-Langner A, Liu C, McCue L A. 2016. Soil Respiration and Bacterial Structure and Function after 17 Years of a Reciprocal Soil Transplant Experiment. PLoS ONE 2016; 11: e0150599. https://doi.org/10.1371/journal.pone.0150599

Schimel J, Bennett J. Nitrogen Mineralization: Challenges of a Changing Paradigm. Ecology 2004; 85:591–602. https://doi.org/10.1890/03-8002

Kindler R, Miltner A, Thullner M, Richnow H H, Kästner M. Fate of bacterial biomass derived fatty acids in soil and their contribution to soil organic matter. Organic Geochemistry 2009; 40(1):29–37. https://doi.org/10.1016/j.orggeochem.2008.09.005

Dise N B, Matzner E, Forsius M. Evaluation of organic horizon C: N ratio as an indicator of nitrate leaching in conifer forests across Europe. Environmental Pollution 1998; 102(1):453–456. https://doi.org/10.1016/S0269-7491(98)80068-7

Elbl J, Plošek L, Kintl A, Přichystalová J, Záhora J, Friedel J K. The effect of increased doses of compost on leaching of mineral nitrogen from arable land. Polish Journal of Environmental Studies 2014; 23(3):697–703.

Gutser R, Ebertseder T, Weber A, Schraml M, Schmidhalter U. Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. Journal of Plant Nutrition and Soil Science 2005; 168(4):439–446. https://doi.org/10.1002/jpln.200520510

Abrol V, Shainberg I, Lado M, Ben-Hur M. Efficacy of dry granular anionic polyacrylamide (PAM) on infiltration, runoff and erosion. European Journal of Soil Science 2013; 64:699–705. https://doi.org/10.1111/ejss.12076

Heuer H, and Smalla K. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS microbiology reviews 2012; 36(6):1083–1104. https://doi.org/10.1111/j.1574-6976.2012.00337.x


Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2018 Revista MVZ Córdoba

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.