DOI: https://doi.org/10.21897/rmvz.1367

Gene expression of growth factor BMP15, GDF9, FGF2 and their receptors in bovine follicular cells

Expresión génica del factor de crecimiento BMP15, GDF9, FGF2 y sus receptores en células foliculares bovinas

Pablo S Reineri, María S. Coria, María G. Barrionuevo, Olegario Hernández, Santiago Callejas, Gustavo A. Palma

Resumen


Introducción. El crecimiento y la maduración folicular implican una serie de transformaciones de diversos componentes del folículo, como el ovocito, las células de la granulosa y de la teca. Varios factores de crecimiento, incluyendo factor de crecimiento de diferenciación 9 (GDF9), proteína morfogénica ósea 15 (BMP15) y factor de crecimiento de fibroblastos básico (FGF2) son importantes para el desarrollo folicular y maduración de ovocitos, por su capacidad de aumentar la proliferación de las células de la granulosa, teca y el estroma ovárico. Objetivo. Evaluar la expresión de los factores de crecimiento GDF9, BMP15, FGF2 y sus principales receptores: el receptor 1 del factor de crecimiento transformante beta (TGFβ-R1), el receptor de la proteína morfogénica del hueso tipo IB (BMPR-IB) y el receptor del factor de crecimiento fibroblástico 2 (FGFR2) en células foliculares bovinas. Materiales y métodos. Se realizó la extracción de ARN total de pooles de ovocitos (OOs) y células del cumulus (CCs) de complejos cumulus-ovocito (COCs) y del pellet de células foliculares (PCs) provenientes de 70 ovarios obtenidos de 96 vaquillonas para carne, colectados en un frigorífico local. Los patrones de expresión de los factores de crecimiento y sus receptores en las células foliculares bovinas fueron evaluados por retro-transcripción seguida de la reacción en cadena de la polimerasa (RT-PCR). Resultados. La presencia de los transcriptos de ARNm de los genes GDF9, BMP15, FGF2, TGFβ-R1, BMPR-IB y FGFR2 fue detectada por RT-PCR en todas las células estudiadas. Es la primera vez que se reporta en ovocitos bovinos la expresión de los receptores TGFβ-R1 y BMPR-IB. Conclusiones. La presencia de transcriptos de factores de crecimiento y sus receptores en las células estudiadas, indica que estos factores podrían actuar como reguladores paracrinos y autocrinos de la foliculogénesis.


Palabras clave


Ovocitos; células de la granulosa; factores de crecimiento; PCR; bovinos

Texto completo:

PDF EPUB

Referencias


Sirard MA, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology 2006; 65(1):126–36. https://doi.org/10.1016/j.theriogenology.2005.09.020

Paulini F, Silva RC, de Paula Rôlo JLJ, Lucci CM. Ultrastructural changes in oocytes during folliculogenesis in domestic mammals. J Ovarian Res 2014; 7(1):102. https://doi.org/10.1186/s13048-014-0102-6

Otsuka F, McTavish K, Shimasaki S. Integral Role of GDF-9 and BMP-15 in Ovarian Function. Mol Reprod Dev 2011; 78(1):9–21. https://doi.org/10.1002/mrd.21265

Chang H-M, Qiao J, Leung PCK. Oocyte–somatic cell interactions in the human ovary—novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update 2016; 23(1):1–18. https://doi.org/10.1093/humupd/dmw039

Mishra SR, Thakur N, Somal A, Parmar MS, Reshma R, Rajesh G, et al. Expression and localization of fibroblast growth factor (FGF) family in buffalo ovarian follicle during different stages of development and modulatory role of FGF2 on steroidogenesis and survival of cultured buffalo granulosa cells. Res Vet Sci 2016; 108:98–111. https://doi.org/10.1016/j.rvsc.2016.08.012

Mahesh YU, Gibence HRW, Shivaji S, Rao BS. Effect of different cryo-devices on In vitro maturation and development of vitrified-warmed immature buffalo oocytes. Cryobiology 2017; 75:106–16. https://doi.org/10.1016/j.cryobiol.2017.01.004

Schams D, Steinberg V, Steffl M, Meyer HHD, Berisha B. Expression and possible role of fibroblast growth factor family members in porcine antral follicles during final maturation. Reproduction 2009; 138(1):141–9. https://doi.org/10.1530/REP-09-0033

Silva JRV, van den Hurk R, Figueiredo JR. Ovarian follicle development In vitro and oocyte competence: advances and challenges for farm animals. Domest Anim Endocrinol 2016; 55:123–35. https://doi.org/10.1016/j.domaniend.2015.12.006

European Union (EU). COUNCIL REGULATION (EC) No 1099/2009 on the protection of animals at the time of killing. Brussels, Belgium; 2009. http://www.fao.org/faolex/results/details/en/?details=LEX-FAOC090989

de Loos F, van Vliet C, van Maurik P, Kruip TAM. Morphology of immature bovine oocytes. Gamete Res 1989; 24(2):197–204. https://doi.org/10.1002/mrd.1120240207

Hatzirodos N, Hummitzsch K, Irving-Rodgers HF, Rodgers RJ. Transcriptome comparisons identify new cell markers for theca interna and granulosa cells from small and large antral ovarian follicles. PLoS One 2015; 10(3):1–13. https://doi.org/10.1371/journal.pone.0119800

Kaivo-Oja N, Bondestam J, Kämäräinen M, Koskimies J, Vitt U, Cranfield M, et al. Growth differentiation factor-9 induces Smad2 activation and inhibin B production in cultured human granulosa-luteal cells. J Clin Endocrinol Metab 2003; 88(2):755–62. https://doi.org/10.1210/jc.2002-021317

Mester B, Ritter LJ, Pitman JL, Bibby AH, Gilchrist RB, McNatty KP, et al. Oocyte expression, secretion and somatic cell interaction of mouse bone morphogenetic protein 15 during the peri-ovulatory period. Reprod Fertil Dev 2015; 27(5):801–11. https://doi.org/10.1071/RD13336

Li Y, Li R-Q, Ou S-B, Zhang N-F, Ren L, Wei L-N, et al. Increased GDF9 and BMP15 mRNA levels in cumulus granulosa cells correlate with oocyte maturation, fertilization, and embryo quality in humans. Reprod Biol Endocrinol 2014; 12(1):81. https://doi.org/10.1186/1477-7827-12-81

Pan ZY, Di R, Tang QQ, Jin HH, Chu MX, Huang DW, et al. Tissue-specific mRNA expression profles of GDF9, BMP15, and BMPR1B genes in prolific and non-prolific goat breeds. Czech J Anim Sci 2015; 60(10):452–8. https://doi.org/10.17221/8525-CJAS

Kona SSR, Praveen Chakravarthi V, Siva Kumar AVN, Srividya D, Padmaja K, Rao VH. Quantitative expression patterns of GDF9 and BMP15 genes in sheep ovarian follicles grown in vitro or cultured in vitro. Theriogenology 2016; 85(2):315–22. https://doi.org/10.1016/j.theriogenology.2015.09.022

Paradis F, Novak S, Murdoch GK, Dyck MK, Dixon WT, Foxcroft GR. Temporal regulation of BMP2, BMP6, BMP15, GDF9, BMPR1A, BMPR1B, BMPR2 and TGFβ-R1 mRNA expression in the oocyte, granulosa and theca cells of developing preovulatory follicles in the pig. Reproduction 2009; 138(1):115–29. https://doi.org/10.1530/REP-08-0538

Hosoe M, Kaneyama K, Ushizawa K, Hayashi K, Takahashi T. Quantitative analysis of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) gene expression in calf and adult bovine ovaries. Reprod Biol Endocrinol 2011; 9(1):33. https://doi.org/10.1186/1477-7827-9-33

Haas CS, Rovani MT, Oliveira FC, Vieira AD, Bordignon V, Gonçalves PBD, et al. Expression of growth and differentiation Factor 9 and cognate receptors during final follicular growth in cattle. Anim Reprod 2016; 13(4):756–61. https://doi.org/10.21451/1984-3143-AR789

Al-musawi SL, Walton KL, Heath D, Simpson CM, Harrison CA. Species differences in the expression and activity of bone morphogenetic protein 15. Endocrinology 2013; 154(2):888–99. https://doi.org/10.1210/en.2012-2015

Chen H, Liu C, Jiang H, Gao Y, Xu M, Wang J, et al. Regulatory Role of miRNA-375 in Expression of BMP15/GDF9 Receptors and its Effect on Proliferation and Apoptosis of Bovine Cumulus Cells. Cell Physiol Biochem 2017; 41(2):439–50. https://doi.org/10.1159/000456597

Juengel JL, Bibby AH, Reader KL, Lun S, Quirke LD, Haydon LJ, et al. The role of transforming growth factor-beta (TGFβ) during ovarian follicular development in sheep. Reprod Biol Endocrinol 2004; 2:78. https://doi.org/10.1186/1477-7827-2-78

Zoheir KMA, Harisa GI, Allam AA, Yang L, Li X, Liang A, et al. Effect of alpha lipoic acid on in vitro development of bovine secondary preantral follicles. Theriogenology 2017; 88:124–130. https://doi.org/10.1016/j.theriogenology.2016.09.013

Zhu, G., Guo, B., Pan, D., Mu, Y., & Feng, S. Expression of bone morphogenetic proteins and receptors in porcine cumulus–oocyte complexes during in vitro maturation. Animal Reproduction Science, 2008; 104(2-4), 275-283. https://doi.org/10.1016/j.anireprosci.2007.02.011

Dorey K, Amaya E. FGF signalling: diverse roles during early vertebrate embryogenesis. Development 2010; 137(22):3731–42. https://doi.org/10.1242/dev.037689

Ozawa M, Yang QE, Ealy AD. The expression of fibroblast growth factor receptors during early bovine conceptus development and pharmacological analysis of their actions on trophoblast growth in vitro. Reproduction 2013; 145(2):191–201. https://doi.org/10.1530/REP-12-0220

Zhang K, Hansen PJ, Ealy AD. Fibroblast growth factor 10 enhances bovine oocyte maturation and developmental competence in vitro. Reproduction. 2010; 140(6):815–26. https://doi.org/10.1530/REP-10-0190

Nilsson E, Parrott J a, Skinner MK. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell Endocrinol. 2001; 175(1–2):123–30. https://doi.org/10.1016/S0303-7207(01)00391-4

Khatib H, Maltecca C, Monson RL, Schutzkus V, Wang X, Rutledge JJ. The fibroblast growth factor 2 gene is associated with embryonic mortality in cattle. J Anim Sci. 2008; 86(9):2063–7. https://doi.org/10.2527/jas.2007-0791

Berisha B, Sinowatz F, Schams D. Expression and Localization of Fibroblast Growth Factor (FGF) Family Members during the Final Growth of Bovine Ovarian Follicles. Mol Reprod Dev. 2004; 67(2):162–71. https://doi.org/10.1002/mrd.10386

Rodríguez-Alvarez L, Sharbatib J, Sharbatib S, Coxa JF, Einspanier R, Ovidio Castro F. Differential gene expression in bovine elongated (Day 17) embryos produced by somatic cell nucleus transfer and in vitro fertilization. Theriogenology. 2010; 74(1):45–59. https://doi.org/10.1016/j.theriogenology.2009.12.018


Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2018 Revista MVZ Córdoba

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.