Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Subclinical laminitis and its association with pO2 and faecal alterations: Isikli, Aydin experience

Subclinical laminitis and its association with pO2 and faecal alterations: Isikli, Aydin experience



Abrir | Descargar

Cómo citar
Akin, I., Alic Ural, D., Gultekin, M., & Ural, K. (2015). Subclinical laminitis and its association with pO2 and faecal alterations: Isikli, Aydin experience. Revista MVZ Córdoba, 20(2), 4534-4543. https://doi.org/10.21897/rmvz.56

Dimensions
PlumX
Ibrahim Akin
Deniz Alic Ural
Mehmet Gultekin
Kerem Ural

ABSTRACT

Objective. The aim of this field trial was to investigate the relationships among subclinical laminitis, hematological, ruminal and faecal alterations. Materials and Methods. To this extent dairy cows presenting subclinical laminitis (n=11) and to those of other healthy cows without laminitis (n=10) were enrolled and assigned into two groups. All animals were receiving the same daily ration formulated to contain 47% cornsilage and 18% hay, mainly. Effects of subclinical laminitis challenges on measurements of feces, and blood samples, were investigated to determine which of these measurements may aid in the diagnosis. pH changes in ruminal fluid collected via rumenocentesis were measured. Besides the following parameters were also measured; blood pH, faecal pH and faecal scoring. Blinded investigators performed the sample collection. Results. No statistical differences between the groups were detected for blood gas values studied regarding pCO2, HCO3, BE, indeed mean that pO2 values decreased statistically (p<0.05) and faecal pH was significantly decreased (p<0.05) in cows with subclinical laminitis in contrast to healthy controls. Conclusions. pO2 values and faecal pH may be valuable as indirect indicators of subclinical laminitis in cattle.

RESUMEN

Objetivos. El objetivo de esta prueba de campo fue investigar las relaciones entre la laminitis subclínicay alteraciones hematológicas, ruminales y fecales. Materiales y métodos. Las vacas lecheras que presentaron laminitis subclínica (n=11) y las vacas sanas sin laminitis (n=10) fueron reclutadas y asignadas en dos grupos. Todos los animales recibieron la misma ración diaria que contenía 47% de ensilaje de maíz y 18% de heno, principalmente. Los efectos de la laminitis subclínica sobre las mediciones de las heces y muestras de sangre, fueron investigados para determinar cuál de estas mediciones pueden ayudar en el diagnóstico. Se midieron los cambios de pH en el fluido ruminal recogido a través rumenocentesis. Además, también se midieron los siguientes parámetros; pH de la sangre, el pH fecal y la puntuación fecal. La toma de las muestras se realizó a doble ciego. Resultados. No se detectaron diferencias significativas entre los grupos para los valores de los gases sanguíneos estudiados en relación con la pCO2, HCO3, BE; lo que significa que los valores de pO2 disminuyeron estadísticamente (p<0.05) y que el pH fecal se redujo significativamente (p<0.05) en las vacas con laminitis subclínica; en contraste con los controles sanos. Conclusiones. Los valores de PO2 y pH fecal pueden ser valiosos como indicadores indirectos de la laminitis subclínica en el ganado.


Visitas del artículo 798 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Richert RM, Cicconi KM, Gamroth MJ, Schukken YH, Stiglbauer KE, Ruegg PL. Perceptions and risk factors for lameness on organic and small conventional dairy farms. J Dairy Sci 2013; 96(8):5018–5026. http://dx.doi.org/10.3168/jds.2012-6257
  2. Sagliyan A, Gunay C, Han MC. Prevalence of lesions associated with subclinical laminitis in dairy cattle. Israel J Vet Med 2010; 65(1):27-33.
  3. Lean IJ, Westwood CT, Golder HM, Vermunt JJ. Impact of nutrition on lameness and claw health in cattle. Livest Sci 2013; 156(1–3):71–87. http://dx.doi.org/10.1016/j.livsci.2013.06.006
  4. Pilachai R, Schonewille JTh, Thamrongyoswittayakul C, Aiumlamai S, Wachirapakorn C, Everts H, Hendriks WH. Diet factors and subclinical laminitis score in lactating cows of smallholder dairy farms in Thailand. Livest Sci 2013; 155(2–3):197–204. http://dx.doi.org/10.1016/j.livsci.2013.04.014
  5. Bell NJ, Bell MJ, Knowles TG, Whay HR, Main DJ, Webster AJF. The development, implementation and testing of a lameness control programme based on HACCP principles and designed for heifers on dairy farms. Vet J 2009; 180:178-188.
  6. http://dx.doi.org/10.1016/j.tvjl.2008.05.020
  7. Harris DJ, Hibburt CD, Anderson GA, Younis PJ, Fitspatrick DH, Dunn AC, Parsons IW, McBeath NR. The incidence, cost and factors associated with foot lameness in dairy cattle in south-western Victoria. Aust Vet J 1988; 65:171-176.
  8. http://dx.doi.org/10.1111/j.1751-0813.1988.tb14294.x
  9. Bicalho RC, Oikonomou G. Control and prevention of lameness associated with claw lesions in dairy cow. Livest Sci 2013; 156: 96–105. http://dx.doi.org/10.1016/j.livsci.2013.06.007
  10. Choquette-Levy L, Baril J, Levy M, St-Pierre H. A study of foot disease of dairy cattle in Quebec. Can Vet J 1985; 26: 278-281.
  11. Enemark JMD. The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): a review. Vet J 2008; 176:32–43. http://dx.doi.org/10.1016/j.tvjl.2007.12.021
  12. Ural DA, Cengiz O, Ural K, Ozaydin S. Dietary clinoptilolite addition as a factor fort he improvement of milk yield in dairy cows. J Anim Vet Adv 2013; 12(1):85-87.
  13. Greenough PR. Bovine laminitis and lameness: a hands-on approach. Espa-a: Elsevier; 2007.
  14. Morgante M, Gianesella M, Casella S, Ravarotto L, Stelletta C, Giudice E. Blood gas analyses, ruminal and blood pH, urine and faecal pH in dairy cows during subacute ruminal acidosis. Comp Clin Pathol 2009; 18:229-232. http://dx.doi.org/10.1007/s00580-008-0793-4
  15. Li S, Khafipour E, Krause DO, Kroeker A, Rodriguez-Lecompte JC, Gozho GN, Plaizier JC. Effects of subacute ruminal acidosis challenges on fermentation and endotoxins in the rumen and hindgut of dairy cows. J Dairy Sci 2012; 95:294-303.
  16. http://dx.doi.org/10.3168/jds.2011-4447
  17. Gozho GN, Krause DO, Plaizier JC. Rumen lipopolysaccharide and inflammation during grain adaptation and subacute ruminal acidosis in steers. J Dairy Sci 2006; 89(11):4404-4413.
  18. http://dx.doi.org/10.3168/jds.S0022-0302(06)72487-0
  19. Li S, Gozho GN, Gakhar N, Khafipour E, Krause DO, Plaizier JC. Evaluation of diagnostic measures for subacute ruminal acidosis in dairy cows. Can J Anim Sci 2012; 92(3):353-364
  20. http://dx.doi.org/10.4141/cjas2012-004
  21. Aschenbach JR, Gabel G. Effect and absorption of histamine in sheep rumen: Significance of acidotic epithelial damage. J Anim Sci 2000; 78:464–470. http://dx.doi.org/10.2527/2000.782464x
  22. Penner GB, Beauchemin KA. Variation among cows in their susceptibility to acidosis: Challenge or Opportunity? Adv Dairy Tech 2010; 22:173-187.
  23. Enemark JMD, Jørgensen RJ, Kristensen NB. An evaluation of parameters for the detection of subclinical rumen acidosis in dairy herds. Vet Res Commun 2004; 28:687-709.
  24. http://dx.doi.org/10.1023/B:VERC.0000045949.31499.20
  25. Eastridge ML. Major advances in applied dairy cattle nutrition. J. Dairy Sci 2006; 89:1311-1323. http://dx.doi.org/10.3168/jds.S0022-0302(06)72199-3
  26. Jacque K. Effects of induced rumen acidosis on the fecal shedding of Escherichia coli in lactating dairy cattle [Honors thesis]. Columbus, Ohio: The Ohio State University; 2012.
  27. Pollitt CC. Equine laminitis: A revised pathophysiology. AAEP Proceedings 1999; 45:188-192.
  28. Oetzel GR. Introduction to Ruminal Acidosis in Dairy Cattle Preconvention. Dairy Herd Problem Investigation Strategies. American Association of Bovine Practitioners 36th Annual Conference, Columbus 2003; 1-11.
  29. Kirker-Head CA, Stephens KA, Toal RL, Goble DO. Circulatory and blood gas changes accompanying the development and treatment of induced laminitis. J Eq Vet Science 1986; 6(6):293-301. http://dx.doi.org/10.1016/S0737-0806(86)80002-8
  30. Verma AK. The interpretation of arterial blood gases. Aust Prescr 2010; 33(4):124-129. http://dx.doi.org/10.18773/austprescr.2010.059
  31. Carreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 2011; 15(6):1239-1253 http://dx.doi.org/10.1111/j.1582-4934.2011.01258.x
  32. Yang W, Hafez T, Thompson CS, Mikhailidis DP, Davidson BR, Winslet MC, Seifalian AM. Direct measurement of hepatic tissue hypoxia by using a novel tcpO2/pCO2 monitoring system in comparison with near-infrared spectroscopy. Liver Int 2003; 23(3):163-170. http://dx.doi.org/10.1034/j.1600-0676.2003.00818.x
  33. Rodrigues M, Deschk M, Santos GGF, Perri SHV, Merenda VR, Hussni CA. et al. Avaliação das características do líquido ruminal, hemogasometria, atividade pedométrica e diagnóstico de laminite subclínica em vacas leiteiras. Pesq Vet Bras 2013; 33(1):99-106.
  34. http://dx.doi.org/10.1590/S0100-736X2013001300016
  35. Akca O, Melischek M, Scheck T, Hellwagner K, Arkilic CF, Kurz A et al. Postoperative pain and subcutaneous oxygen tension. Lancet 1999; 354(3):41-42. http://dx.doi.org/10.1016/S0140-6736(99)00874-0

Sistema OJS 3.4.0.3 - Metabiblioteca |