Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Coat genetic markers of the domestic cat Felis catus (Felidae) from southwestern Colombia

Coat genetic markers of the domestic cat Felis catus (Felidae) from southwestern Colombia



Abrir | Descargar

Cómo citar
Peñuela A, M., Pardo P, E., García M, V. H., & Cárdenas H, H. (2016). Coat genetic markers of the domestic cat Felis catus (Felidae) from southwestern Colombia. Revista MVZ Córdoba, 21(2), 5390-5403. https://doi.org/10.21897/rmvz.605

Dimensions
PlumX
Mauricio Peñuela A
Enrique Pardo P
Víctor Hugo García M
Heiber Cárdenas H

Objectives. Establish the genetic profiles of cats from 12 neighboring municipalities in southwestern Colombia, in a town course from Pereira-Popayán. Estimate the degree of diversity, genetic structure, and quantify gene flow. Materials and methods. Were inventoried the phenotypic markers present in the pigmentation and structure of the coat of 1482 cats of the municipalities surveyed. Based on these phenotypic frequencies, allele frequencies, heterozygosity, Hardy-Weinberg equilibrium, F statistics and Nei genetic distances were calculated. A comparison was also made between genetic and geographic distance matrices to determine if there was a significant association between the two. Results. With the genetic profiles of the populations we estimated the degree of diversity. We found the populations in equilibrium for the S autosomal locus and for the O sex-linked locus. We found a low level genetic structure, and it was determined that there was no significant correlation between the genetic and geographic distance matrices among populations. Conclusions: These findings can be explained on the basis of the processes of human displacement for this region, due to the fact that the establishment of feline populations in these municipalities originated during the same historical period. Identical genetic profiles are shared as a result of colonization events, and due to possible continued migration among these populations.

Objetivos. Determinar los perfiles genéticos de los gatos de 12 municipios contiguos del suroccidente colombiano en un trayecto Pereira-Popayán; estimar el grado de diversidad, estructura genética y cuantificar el flujo de genes. Materiales y métodos. Se inventariaron los marcadores fenotípicos presentes en la pigmentación y estructura del pelaje de 1482 gatos de los municipios estudiados, con base en estas frecuencias fenotípicas se calcularon frecuencias alélicas, heterocigosidad, equilibrio Hardy-Weinberg, el estadístico FST y distancias genéticas de Nei. También se realizó una comparación entre matrices de distancia genética y geográfica para determinar si existía asociación significativa entre las dos. Resultados. Con los perfiles genéticos de las poblaciones se estimó el grado de diversidad, se halló en equilibrio Hardy-Weinberg a las poblaciones para el locus autosómico S y el locus ligado al sexo O. Se encontró bajo nivel de estructura genética y se determinó que no existe correlación significativa entre las matrices de distancia genética y geográfica entre poblaciones. Conclusiones. Estos hallazgos se pueden explicar con base en los procesos de desplazamiento humano para esta región, debido a que el establecimiento de poblaciones felinas en estos municipios se originó en el mismo período histórico. Se comparten perfiles genéticos idénticos como resultado, posiblemente, de eventos de colonización y migración continua entre estas poblaciones.


Visitas del artículo 1192 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Shostell JM, Staudinger J, Ruiz-Garcia M. Mutant allele frequencies in domestic cat populations in Arkansas and Tennessee. J Hered 2005; 96(5):557-565. http://dx.doi.org/10.1093/jhered/esi072
  2. Ruiz-García M, Álvarez D. A biogeographical population genetics perspective of the colonization of cats in Latin America and temporal genetic changes in Brazilian cat populations. Gen Mol Biol 2008; 31(3):772-782. http://dx.doi.org/10.1590/S1415-47572008000400026
  3. Pe-uela M, Cárdenas H. Marcadores genéticos del pelaje en gatos domésticos de Capurganá-Colombia. Mom Cien 2012; 9(1):28-33.
  4. Pe-a-Cruz AF, Sandoval S, Pati-o A, Bedoya M, Rodríguez A. Orjuela J et al. Genetic analysis of the cat population of north and south of Cali, Colombia. Acta Biolo Colomb 2015; 20(1):109-116. http://dx.doi.org/10.15446/abc.v20n1.41610
  5. Golubeva NA, Zhigachev AL. New data on coat color gene frequencies in catas: 1 the Armavir population. Russ J Genet 2007; 43(8): 894-898. http://dx.doi.org/10.1134/S1022795407080108
  6. Goncharenko GG, Zyat′kov SA, Lysenko AN. Genetic structure and level of differentiation in Felis catus populations of the European continent. Dokl Biol Sci 2010; 431:135-138. http://dx.doi.org/10.1134/S0012496610020183
  7. Goncharenko GG, Zyat′kov SA. The level of genetic differentiation in cats (Felis catus L.) in western European, North American, and Eastern European populations. Russ J Genet 2012; 2(1):47-52. http://dx.doi.org/10.1134/S207905971201008X
  8. Kholin SK. New data on coat color mutant gene frequencies in domestic cats of the European part of Russia (the city of Kamyshin). Russ J Genet 2012; 48(7):751-754. http://dx.doi.org/10.1134/S1022795412060051
  9. Kholin SK. New data on coat color mutant gene frequencies in domestic cats of Kholmsk (Sakhalin Island). Amurian Zoological Journal 2013; V(4):473-475.
  10. Ruiz-García M, Álvarez D, Shostell JM. Population genetic analysis of cat populations from Mexico, Colombia, Bolivia, and the Dominican Republic: identification of different gene pools in Latin America. J Genet 2005; 84(2):147-17. http://dx.doi.org/10.1007/BF02715841
  11. Ruiz-García M, Álvarez D. Análisis filogenético de 21 poblaciones latinoamericanas de gatos, mediante 10 loci morfolágicos, utilizando métodos de matrices de distancias genéticas y de máxima parsimonia. Bol R Soc Esp Hist Nat Secc Biol (Sec Biol) 1999:139-164.
  12. Committee on Standardized Genetic Nomenclature for Cats. Standardized genetic nomenclature for the domestic cat. J Hered 1968; 59:39-49.
  13. Eizirik E, David VA, Buckley-Beason V, Roelke ME, Schäffer A, Hannah SS et al. Defining and Mapping Mammalian Coat Pattern Genes: Multiple Genomic Regions Implicated in Domestic Cat Stripes and Spots. Genetics 2010; 184:267-275. http://dx.doi.org/10.1534/genetics.109.109629
  14. Ruiz-Garcia M. Genetic structure of the Marseilles cat population: is there really a strong founder effect?. Genet Sel Evol 1994; 26: 317-331. http://dx.doi.org/10.1186/1297-9686-26-4-317
  15. Lyons LA, Foe IT, Rah HC, Grahn RA. Chocolate coated cats: TYRP1 mutations for brown color in domestic cats. Mamm Genome 2005; 16(5):356-366. http://dx.doi.org/10.1007/s00335-004-2455-4
  16. Cooper MP, Fretwell N, Bailey SJ, Lyons LA. White spotting in the domestic cat (Felis catus) maps near KIT on feline chromosome B1. Anim Genet 2006; 37(2):163-165. http://dx.doi.org/10.1111/j.1365-2052.2005.01389.x
  17. Ishida Y, David VA, Eizirik E, Schäffer AA, Neelam BA, Roelke ME et al. A homozygous single-base deletion in MLPH causes the dilute coat color phenotype in the domestic cat. Genomics 2006; 88(6):698-705. http://dx.doi.org/10.1016/j.ygeno.2006.06.006
  18. Kehler JS, David VA, Schäffer AA, Bajema K, Eizirik E, Ryugo DK et al. Four independent mutations in the feline fibroblast growth factor 5 gene determine the long-haired phenotype in domestic cats. J hered 2007; 98(6):555-66. http://dx.doi.org/10.1093/jhered/esm072
  19. Menotti-Raymond M, David VA, Eizirik E, Roelke ME, Ghaffari H, O'Brien SJ. Mapping of the domestic cat ″SILVER" coat color locus identifies a unique genomic location for silver in mammals. J hered 2009; 100 Suppl (Supplement 1):S8-13.
  20. Menotti-Raymond M, David VA, Schäffer AA, Tomlin JF, Eizirik E, Philip C et al. An autosomal genetic linkage map of the domestic cat, Felis silvestris catus. Genomics 2009; 93(4):305-313. http://dx.doi.org/10.1016/j.ygeno.2008.11.004
  21. Schmidt−Küntzel A, Nelson G, David VA, Schäffer AA, Eizirik E, Roelke ME et al. A domestic cat X chromosome linkage map and the sex-linked orange locus: mapping of orange, multiple origins and epistasis over nonagouti. Genetics 2009; 181(4):1415-1425. http://dx.doi.org/10.1534/genetics.108.095240
  22. Eizirik E, Yuhki N, Johnson WE, Menotti-Raymond M, Hannah SS, O'Brien SJ. Molecular genetics and evolution of melanism in the cat family. Curr biol 2003; 13(5):448-53. http://dx.doi.org/10.1016/S0960-9822(03)00128-3
  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725-2729. http://dx.doi.org/10.1093/molbev/mst197
  24. Peakall R, Smouse PE. GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012; 28:2537-2539. http://dx.doi.org/10.1093/bioinformatics/bts460
  25. Christensen A. Cats as an Aid to Teaching Genetics. Genetics 2000: 155(3):999-1004.
  26. Henao JM, Arrubla G. Historia de Colombia para la ense-anza secundaria. Librería Colombiana, C. Roldán & Tamayo. 1920. 592p.
  27. Padilla S, Lápez M, González L. La encomienda en Popayán: tres estudios. Sevilla, Espa-a; Consejo Superior de investigaciones Científicas: 1977.

Sistema OJS 3.4.0.3 - Metabiblioteca |