Tratamiento de efluentes: una vía para la acuicultura responsable

Contenido principal del artículo

Autores

Sandra Pardo Héctor Suárez Eduardo Soriano

Resumen

De las actividades acuícolas, la producción en estanques tiene una gran importancia en los países como Brasil, Colombia y Venezuela, entre otros, en donde las cifras de producción presentan un panorama de crecimiento acelerado. La piscicultura, por ejemplo, tiene un enorme potencial debido a las óptimas condiciones de nuestros países en cuanto a hidrología, topografía y edafología, y por la riqueza en especies ícticas con cualidades para cultivo. Así, la piscicultura se torna una actividad agropecuaria autóctona y ventajosa. Trabajar con riquezas naturales propias permite ventajas competitivas, minimizando costos, y reduciendo necesidades de importar insumos y tecnología, entre otras. Observamos que otras actividades agropecuarias se sustentan en especies importadas y adaptadas a las más adversas condiciones, como ejemplo, el ganado europeo, el arroz chino, etc. Sin embargo, se debe reconocer que desarrollar tecnologías de producción obliga a considerar aspectos ambientales que garanticen su permanencia en el tiempo, con beneficios sociales, económicos, etc. La acuicultura como cualquier actividad genera impacto, empezando porque se desarrolla en ecosistemas artificiales diferentes a los naturales, y afectando los recursos hídricos por la cantidad de efluentes ricos en materia orgánica, que son vertidos sin siquiera saber lo que está siendo lanzado. Este artículo presenta una revisión de la actividad, los diferentes tipos de impactos generados y algunas alternativas biológicas para el tratamiento de los efluentes, buscando herramientas para alcanzar una acuicultura responsable.

Palabras clave:

Detalles del artículo

Referencias

1. FAO. The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations-FAO. Rome, Italy 2004; 153.

2. Pillay T. The challenges of sustainable aquaculture. World aquaculture, 1996; 27: 7-9.

3. FAO. Desarrollo de la acuicultura. Orientaciones técnicas para la pesca responsable Nº 5. FAO. Roma, Italia. 1999; 54.

4. Instituto Nacional de Pesca y Acuicultura (INPA). Boletín estadístico pesquero y acuícola. Bogotá, Colombia. 1998; 35.

5. Hernandez-Rodríguez A, Alceste-Oliviero C, Sanchez R, Jory D, Vidal L, Constain- Franco L. Aquaculture development trends in Latin America and the Caribbean. In: Subasinghe RP, Bueno P, Phillips MJ, Hough C, McGladdery SE, Arthur JR. (eds). Technical Proceedings of the Conference on Aquaculture in the Third Millennium, Bangkok. NACA and FAO 2001; 317-340.

6. FAO. Aquaculture development. FAO Fisheries Circular 1997; 815 (rev. 8).

7. CMMAD. Nosso Futuro Comum. Rio de Janeiro: Fundação Getulio Vargas. 1991.

8. FAO. Informe de la Consulta de Expertos sobre el Propuesto Subcomité de Acuicultura del Comité de Pesca. Bangkok, Tailandia, 28-29 de febrero de 2000. FAO Informe de Pesca 2000; 623: 1-39.

9. Vinatea L. Aqüicultura e desenvolvimento sustentável. Edit UFSC Brasil 1999; 310.

10. New M. Responsible aquaculture: is this a special challenge for developing countries? World Aquaculture 2003; 34: 49-52.

11. Papoutsoglou S. Impact of aquaculture on the aquatic environment in relation to applied production systems. In: De Pauw N, Joyce J. (eds.). Aquaculture and Environment. Dublin, Ireland. European Aquaculture Society Spec Publ 1991; 16: 71-78.

12. Boyd C. Shrimp pond bottom soil and sediment management. In: Wyban J. (ed.). World Aquaculture' 92–Special Session on Shrimp Farming. Anais…Baton Rouge: The World Aquaculture Society 1992; 166 181.

13. Acosta-Nassar M, Morell J, Corredor J. The nitrogen budget of a tropical semi-intensive freshwater fish culture pond. Journal of the World Aquaculture Society 1994; 25: 261-270. https://doi.org/10.1111/j.1749-7345.1994.tb00189.x

14. Gross A, Boyd C, Wood C. Nitrogen transformations and balance in channel catfish ponds. Aquacultural Engineering 2000; 24: 1–14. https://doi.org/10.1016/S0144-8609(00)00062-5

15. Schmittou H. Situation outlook and prospects of the world’s aquaculture feed supply. In: Simpósio Internacional Sobre Nutrição de Peixes e Crustáceos, Campos de Jordão, Sao Paulo. Anais... Colégio Brasileiro de Nutrição Animal (CBNA) 1995; 9-32.

16. Figueiredo MCB de, Araújo L, Gomes R, Rosa M, Paulino W, Morais LFS de. Environmental impacts of inland shrimp farming effluents. Eng Sanit Ambient 2005; 10: 167-174.

17. Piedrahita R. Reducing the potencial environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 2003; 226: 35-44. https://doi.org/10.1016/S0044-8486(03)00465-4

18. Viadero R, Cunningham J, Semmens K, Tierney A. Effluent and production impacts of flow-through aquaculture operation in west Virginia. Aquacultural Engineering, 2005; 33: 258-270. https://doi.org/10.1016/j.aquaeng.2005.02.004

19. Kestemont P. Different systems of carp production and their impacts on the environment. Aquaculture 1995; 129: 347-372. https://doi.org/10.1016/0044-8486(94)00292-V

20. Billard R, Perchec G. Systems and technologies of production and processing for carp. In: Kestemont P, Billard R. (eds.). Aquaculture of freshwater species (except salmonids). Torremolinos, Spain. European Aquaculture Society Spec Publ 1993; 20: 1-5.

21. Cross T. Potential genetic interactions between reared and wild fish in Europe, with particular emphasis on Atlantic salmon. In: De Pauw N, Joyce J. (eds.). Aquaculture and Environment. Dublin, Ireland. European Aquaculture Society Spec Publ 1992; 16: 299-308.

22. Tacon A, Forster I. Aquafeeds and the environment: policy implications. Aquaculture 2003; 226:181-189. https://doi.org/10.1016/S0044-8486(03)00476-9

23. Troell M, Neori A, Chopin T, Buschmann AH. Biological wastewater treatment in aquaculture–more than just bacteria. World Aquaculture 2005; 36: 27-29.

24. Teichert-Coddington D, Rouse D, Potts A, Boyd C. Treatment of harvest discharge from intensive shrimp ponds by settling. Aquacultural Engineering 1999; 19: 147-161. https://doi.org/10.1016/S0144-8609(98)00047-8

25. Boyd C. Guidelines for aquaculture effluent management at the farm-level. Aquaculture 2003; 226:101-112. https://doi.org/10.1016/S0044-8486(03)00471-X

26. Boyd C. The status of codes of practice in aquaculture. World Aquaculture, 2003; 34: 63-66.

27. Hopkins J, Hamilton R, Sandifer P, Browdy C, Stokes A. Effect of water exchange rate on production, water quality, effluent characteristics and nitrogen budgets os intensive shrimp ponds. J World Aquacult Soc 1993; 24: 304-320. https://doi.org/10.1111/j.1749-7345.1993.tb00162.x

28. Seok K, Leonard S, Boyd C, Schwartz M. Water quality in annually drained and in drained channel catfish ponds over a threeyear period. Progr Fish Culturist 1995; 57: 52-58. https://doi.org/10.1577/1548-8640(1995)057<0052:CWQIAD>2.3.CO;2

29. Cho C, Bureau D. A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture. Aquaculture Research 2001; 32: 349-360. https://doi.org/10.1046/j.1355-557x.2001.00027.x


30. Johan P, Watanabe T, Satoh S, Kiron V. Formulation of low phosphorus loading diets for carp (Cyprinus carpio L .) . Aquaculture Research 2001; 32: 361-368. https://doi.org/10.1046/j.1355-557x.2001.00028.x

31. Brinker A, Koppe W, Rösch R. Optimised effluent treatment by stabilised trout faeces. Aquaculture 2005; 249: 125-144. https://doi.org/10.1016/j.aquaculture.2004.12.029

32. Teichert-Coddington DR, Martinez D, Ramirez E, 1996. Characterization of shrimp farm effluents in Honduras and chemical budgets of selected nutrients. In: Egna H, Goetze B, Burke D, McNamara M, Clair D. (eds.). Pond Dynamics/ Aquaculture Collaborative Research Program, Thirteenth Annual Technical Report. PD/A CRSP, Office of International Research & Development, Oregon State University, Corvallis, USA 1996; 70-84.

33. Gautier D, Amador J, Newmark F. The use of mangrove wetland as a biofilter to treat shrimp pond effluents: preliminary results of an experiment on the Caribbean coast of Colombia. Aquaculture Research 2004; 32: 787-799. https://doi.org/10.1046/j.1365-2109.2001.00614.x

34. Jones A, Dennison W, Preston N. Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgal absorption: a laboratory scale study. Aquaculture 2001; 193: 155-178. https://doi.org/10.1016/S0044-8486(00)00486-5

35. Hussenot J, Lefebvre S, Brassard N. Openail treatment of wastewater from landbased marine fish farms in extensive and intensive systems: current technology and future perspectives. Aquatic Living Resour 1998; 11: 297-304. https://doi.org/10.1016/S0990-7440(98)80015-6

36. Porrello S, Lenzi M, Tomassetti P, Persia E, Finoia M, Mercatali I. Reduction of aquaculture wastewater eutrophication by phytotreatment ponds system: II. Nitrogen and phosphorus content in macroalgae and sediment. Aquaculture 2003; 219: 531-544. https://doi.org/10.1016/S0044-8486(03)00013-9

37. Wang J. Conceptual design of a microalgae-based recirculation oyster and shrimp system. Aquacultural Engineering 2003; 28: 37-46. https://doi.org/10.1016/S0144-8609(03)00020-7

38. Azim M, Wahab M, van Dam A, Beveridge M, Milstein A, Verdegem M. Optimization of fertilization rate for maximizing periphyton production on artificial substrates and the implications for periphyton-based aquaculture. Aquaculture Research 2001; 32: 749-760. https://doi.org/10.1046/j.1365-2109.2001.00613.x

39. Schulz C, Gelbrecht J, Rennert B. Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow. Aquaculture 2003; 217: 207-221. https://doi.org/10.1016/S0044-8486(02)00204-1

40. Brinker A, Rösch R. Factors determining the size of suspended solids in flow-through fish farm. Aquacultural Engineering 2005; 33: 1-19. https://doi.org/10.1016/j.aquaeng.2004.10.003

41. Dame R, Dankers N, Prins T, Jongsma H, Smaal A. The influence of mussel beds on nutrients in the Western Wadden Sea and Eastern Scheldt Estuaries Estuaries 1991; 14: 130-138.

42. Soto D, Mena G. Filter feeding by the freshwater mussel, Diplodon chilensis, as a biocontrol of salmon farming eutrophication. Aquaculture 1999; 171: 65-81. https://doi.org/10.1016/S0044-8486(98)00420-7

43. Olivera A. Os moluscos bivalves e a biorremediação dos impactos da carcinicultura. Panorama da Aquicultura 2001; 11: 37-39.

44. Olivera A, Brito L. Treating shrimp farming effluent using the native oyster, Crassostrea rhizophorae, in Brazil. World Aquaculture 2005; 36: 60-63.

45. Lin C, Ruamthaveesub P, Wanuchsoontorn P. Integrated culture of the green mussel Perna viridis in wastewater from an intensive shrimp pond: concept and practice. World Aquaculture 1993; 24: 68-73.

46. Reeders H, Bij de Vaate A, Slim FJ. The filtration rate of Dreisseenia plyphorma (Bivalvia) in three dutch lakes with reference to biological water quality management. Freshwater Biol 1989; 22: 133-141. https://doi.org/10.1111/j.1365-2427.1989.tb01088.x

47. Bunt C, Mac Isaac H, Sprules W. Pumping rates and projected filtering impact of juvenile Zebra Mussels (Dreisseenia polymorpha) in Western Lake Erie. Can J Fish Aquat Sci 1993; 50: 1017-1022. https://doi.org/10.1139/f93-117

48. Stuart K, Eversole A. Filtration of green algae and cyanobaceria by freschwater mussels in the partitioned aquaculture system. Journal of the World Aquaculture Society 2001; 32: 105-111. https://doi.org/10.1111/j.1749-7345.2001.tb00928.x

49. Brix H, Schierup H. The use of the aquatic macrophytes in water-pollution control. Ambio 1989; 18: 100-107.

50. Weisner S, Eriksson P, Granéli W, Leonardson L. Influence of macrophytes on nitrate removal in wetlands. Ambio 1994; 23: 363-366.

51. Brister D. Organic aquaculture: moving toward national standards. World Aquaculture 2001; 32: 51 53.

52. Rakocy J, Bailey D. Initial economic analysis of aquaponic systems. In: Chopin T, Reinertsen H. (eds.). Aquaculture Europe 2003: Beyond Monoculture. Trondheim, Norway. European Aquaculture Society Spec Publ 2003; 33: 58-64.

53. Lin Y, Jing S, Lee D, Chang Y, Chen V, Shih K. Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate. Environmental Pollution 2005; 134: 411-421. https://doi.org/10.1016/j.envpol.2004.09.015

54. Posadas B. Comparative economic analysis of using different sizes of constructed wetlands in recirculating catfish pond production. Journal of Applied Aquaculture 2001; 11: 1-19. https://doi.org/10.1300/J028v11n03_01

55. Troell M, Halling C, Neori A. Chopin T, Buschmann AH, Kautsky N, et al. Integrated mariculture: asking the right questions. Aquaculture 2003; 226: 69-90. https://doi.org/10.1016/S0044-8486(03)00469-1

56. Neori A, Chopin T, Troell M, Buschmann A, Kraemer G, Halling C, et al. 2003. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern maricultura. Aquaculture 2003; 231: 361-391. https://doi.org/10.1016/j.aquaculture.2003.11.015

57. Buschmann A, Hernández-González M, Astudillo C, De la Fuente L, Gutierrez A, Aroca G. Seaweed cultivation, product development and integrated aquaculture studies in Chile. World Aquaculture 2005; 36: 51-53.

58. Lazur A, Britt D. Pond recirculating production systems. SRAC Publication 1997; 455: 1-7.

59. Shpigel M, Neori A, Popper D, Gordin H. A proposed model for "environmentally clean" land-based culture of fish, bivalves and seaweeds. Aquaculture 1993; 117: 115-128. https://doi.org/10.1016/0044-8486(93)90128-L

60. Chow F, Macchiavello J, Santa Cruz S, Fonck E, Olivares J. Utilization of Gracilaria chilensis (Rhodophyta: Gracilariaceae) as a biofilter in the depuration of effluents from tank cultures of fish, oysters and sea urchins. J World Aquacult Soc 2001; 32: 215-220. https://doi.org/10.1111/j.1749-7345.2001.tb01098.x

Descargas

La descarga de datos todavía no está disponible.