Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Evaluación biológica de una fracción de la esponja marina Topsentia ophiraphidites del Caribe colombiano

Evaluación biológica de una fracción de la esponja marina Topsentia ophiraphidites del Caribe colombiano



Abrir | Descargar

Cómo citar
Blandón G, L., Márquez F, D., López O, J., & Márquez F, M. (2013). Evaluación biológica de una fracción de la esponja marina Topsentia ophiraphidites del Caribe colombiano. Revista MVZ Córdoba, 18(supl), 3633-3641. https://doi.org/10.21897/rmvz.129

Dimensions
PlumX
Lina Blandón G
Diana Márquez F
Juan López O
Maria Márquez F

RESUMEN

Objetivo. Evaluar la actividad antiproliferativa y genotóxica de una fracción con actividad citotóxica obtenida de la esponja marina del Caribe colombiano Topsentia ophiraphidites (Fracción T4). Materiales y métodos. La fracción T4 de la esponja marina Topsentia ophiraphidites fue obtenida en el laboratorio de Productos Naturales Marinos de la Universidad de Antioquia. La actividad antiproliferativa se evaluó mediante ensayos de eficiencia de clonación, función de acumulación y cinética proliferativa por intercambio de cromátidas hermanas (ICH); la actividad genotóxica se evaluó mediante electroforesis en gel de células individuales (Ensayo cometa) e intercambio de cromátidas hermanas (ICH). Todas las pruebas fueron realizadas sobre las líneas celulares Jurkat y CHO. Resultados. La fracción T4 afectó el ciclo celular de las células CHO y mostró daño genotóxica crónico en las células Jurkat. Conclusiones. Se recomienda la evaluación de la fracción T4 en otras líneas celulares derivadas de tumor con el fin de determinar un posible efecto diferencial, además de evaluar otras actividades de tipo antimicrobiano, antimalárico, entre otros.


Visitas del artículo 894 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Pereira JRCS, Hilário FF, Lima AB, Silveira MLT, Silva LM, Alves RB, et al. Cytotoxicity evaluation of marine alkaloid analogues of viscosaline and theonelladin C. Biomed Prevent Nut 2012; 2(2):145-148. http://dx.doi.org/10.1016/j.bionut.2012.01.003
  2. Sepčić K, Kauferstein S, Mebs D, Turk T. Biological activities of aqueous and organic extracts from tropical marine sponges. Marine Drugs 2010; 8(5):1550-1566. http://dx.doi.org/10.3390/md8051550
  3. Galeano E, Martínez A. Antimicrobial activity of marine sponges from Urabá Gulf, Colombian Caribbean region. J Mycol 2007; 17(1):21-24. http://dx.doi.org/10.1016/j.mycmed.2006.12.002
  4. Laville R, Thomas OP, Berrue F, Marquez D, Vacelet J, Amade P. Bioactive guanidine alkaloids from two Caribbean marine sponges. J Nat Prod 2009; 72(9):1589-1594. http://dx.doi.org/10.1021/np900244g
  5. Baerga-Ortiz A. Biotechnology and biochemistry of marine natural products. P R Health Sci J 2009; 28(3):251-257.
  6. Sipkema D, Franssen MC, Osinga R, Tramper J, Wijffels RH. Marine sponges as pharmacy. Mar Biotechnol (NY) 2005; 7(3):142-162. http://dx.doi.org/10.1007/s10126-004-0405-5
  7. Jimeno J, Aracil M, Tercero JC. Adding pharmacogenomics to the development of new marine-derived anticancer agents. J Translat Med 2006; 4(1):3. http://dx.doi.org/10.1186/1479-5876-4-3
  8. Mora J, Zea S, Santos M, Newmark – Umbreit F. Capacidad antimitótica de extractos de esponjas del Caribe colombiano. Bol Invest Mar Cost 2007; 36:167–169.
  9. Blandón LM. Evaluación del potencial bioactivo de las esponjas marinas Myrmekioderma gyroderma y Topsentia ophiraphidites. [Tesis de Maestría]. Medellín, Colombia: Universidad Nacional de Colombia, Facultad de Ciencias; Área curricular de Biotecnología; 2012.
  10. Cai X, Xing X, Cai J, Chen Q, Wu S, Huang F. Connection between biomechanics and cytoskeleton structure of lymphocyte and Jurkat cells: An AFM study. Micron 2010; 41(3):257-62. http://dx.doi.org/10.1016/j.micron.2009.08.011
  11. Ahn WS, Antoniewicz MR. Parallel labeling experiments with [1,2-13C]glucose and [U-13C] glutamine provide new insights into CHO cell metabolism. Metabolic Engineering 2013; 15:34-47. http://dx.doi.org/10.1016/j.ymben.2012.10.001
  12. Freshney IR. Culture of Animal Cells: A Manual of Basic Technique. United States of America: John Wiley & Sons Inc; 2005. http://dx.doi.org/10.1002/9780471747598
  13. Puck TT, Steffen J. Life Cycle Analysis of Mammalian Cells I. A Method for localizing metabolic events within the life cycle, and its application to the action of colcemide ans sublethal doses of X - irradiation. Biophys J 1963; 3:379-397. http://dx.doi.org/10.1016/S0006-3495(63)86828-9
  14. López JB, Márquez ME. Modelo experimental para el estudio cromosómico en células de mamífero. Medellín- Colombia: Universdad Nacional de Colombia, Facultad de Ciencias; 2002.
  15. Orta ML, Mateos S, Cantero G, Wolff LJ, Cortés F. Protection of halogenated DNA from strand breakage and sister-chromatid exchange induced by the topoisomerase I inhibitor camptothecin. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2008; 637(1–2):40-48. http://dx.doi.org/10.1016/j.mrfmmm.2007.06.012
  16. Ben Salah G, Kamoun H, Rebai A, Ben Youssef A, Ayadi H, Belghith-Mahfoudh N, et al. Sister chromatid exchange (SCE) and high-frequency cells (HFC) in peripheral blood lymphocytes of healthy Tunisian smokers. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2011; 719(1–2):1-6. http://dx.doi.org/10.1016/j.mrgentox.2010.09.003
  17. Speit G, Vasquez M, Hartmann A. The comet assay as an indicator test for germ cell genotoxicity. Mutation Research/Reviews in Mutation Research 2009; 681(1):3-12. http://dx.doi.org/10.1016/j.mrrev.2008.03.005
  18. Fairbairn DW, Olive PL, O'Neill KL. The comet assay: a comprehensive review. Mutation Research/Reviews in Genetic Toxicology 1995; 339(1):37-59. http://dx.doi.org/10.1016/0165-1110(94)00013-3
  19. Liao W, McNutt MA, Zhu W-G. The comet assay: A sensitive method for detecting DNA damage in individual cells. Methods 2009; 48(1):46-53. http://dx.doi.org/10.1016/j.ymeth.2009.02.016
  20. Boyd MR. Some practical considerations and applications of the National Cancer Institute In Vitro Anticancer Drug Discovery Screen. Totowa, Nueva Jersey: Teicher Humana Press Inc; 1995.
  21. Chakravarti SK, Klopman G. A structural analysis of the differential cytotoxicity of chemicals in the NCI-60 cancer cell lines. Bioorganic & Medicinal Chemistry 2008; 16(7):4052–4063. http://dx.doi.org/10.1016/j.bmc.2008.01.024
  22. Rubinstein L, Shoemaker R, Paull K, Simon R, Tosini S, Skehan P, Scudiero D, Monks A, Boyd M. Comparison of in Vitro anticancer – drugscreening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor Cell Lines. 1990. J Natl Cancer Inst 1990; 82:1113-1118. http://dx.doi.org/10.1093/jnci/82.13.1113
  23. Márquez DM. Estudio Químico y Evaluación Biológica de Esponjas Marinas del Caribe Colombiano. [Tesis Doctoral]. Medellín, Colombia: Universidad de Antioquia, Facultad de Química Farmacéutica; 2009.
  24. Guzii AG, Makarieva TN, Denisenko VA, Dmitrenok PS, Burtseva YV, Krasokhin VB, et al. Topsentiasterol sulfates with novel iodinated and chlorinated side chains from the marine sponge Topsentia sp. Tetrahedron Letters 2008; 49(50):7191-7193. http://dx.doi.org/10.1016/j.tetlet.2008.10.007
  25. McKee TC, Cardellina II JH, Tischler M, Snader KM, Boyd MR. Ibisterol sulfate, a novel HIVinhibitory sulfated sterol from the deep water sponge Topsentia sp. Tetrahedron Letters 1993;34(3):389-392. http://dx.doi.org/10.1016/0040-4039(93)85083-9
  26. Gupta L, Talwar A, Chauhan PMS. Bis and tris indole alkaloids from marine organisms: new leads for drug discovery. Current Medicinal Chemistry 2007; 14(16):1789-1803. http://dx.doi.org/10.2174/092986707781058904
  27. Mal SK, Bohé L, Achab S. Convenient access to bis-indole alkaloids. Application to the synthesis of topsentins. Tetrahedron 2008;64(25):5904-5914. http://dx.doi.org/10.1016/j.tet.2008.04.045
  28. Siddiqui RA, Jenski LJ, Neff K, Harvey K, Kovacs RJ, Stillwell W. Docosahexaenoic acid induces apoptosis in Jurkat cells by a protein phosphatase-mediated process. Biochimica et Biophysica Acta (BBA). Molecular Cell Research 2001;1499(3):265-275.
  29. Clarke PR, Allan LA. Cell-cycle control in the face of damage – a matter of life or death. Trends in Cell Biology 2009; 19(3):89-98. http://dx.doi.org/10.1016/j.tcb.2008.12.003
  30. Sjögren C, Ström L. S-phase and DNA damage activated establishment of Sister chromatid cohesion—importance for DNA repair. Experimental Cell Research 2010; 316(9):1445-1453. http://dx.doi.org/10.1016/j.yexcr.2009.12.018
  31. Speit G, Vásquez M, Hartmann A. The comet assay as an indicator test for germ cell genotoxicity. Mutation Research/Reviews in Mutation Research 2009; 681(1):3-12. DOI dx.doi.org/10.1016/j.mrrev.2008.03.005 http://dx.doi.org/10.1016/j.mrrev.2008.03.005
  32. Rosenberger A, Rössler U, Hornhardt S, Sauter W, Bickeböller H, Wichmann H-E, etal. Validation of a fully automated COMET assay: 1.75 million single cells measured over a 5 year period. DNA Repair 2011; 10(3):322-337. http://dx.doi.org/10.1016/j.dnarep.2010.12.003
  33. Cai X, Xing X, Cai J, Chen Q, Wu S, Huang F. Connection between biomechanics and cytoskeleton structure of lymphocyte and Jurkat cells: An AFM study. Micron 2010; 41(3):257-62. http://dx.doi.org/10.1016/j.micron.2009.08.011
  34. Ahn WS, Antoniewicz MR. Parallel labeling experiments with [1,2-13C]glucose and [U-13C] glutamine provide new insights into CHO cell metabolism. Metabolic Engineering 2013; 15:34-47. http://dx.doi.org/10.1016/j.ymben.2012.10.001

Sistema OJS 3.4.0.3 - Metabiblioteca |