Reducción de metano in vitro con el glucósido cianogénico Linamarina

Contenido principal del artículo

Autores

Maria Del Carmen Zavaleta Cordova https://orcid.org/0000-0003-4422-3460 Carla Loreto Orellana Mardones https://orcid.org/0000-0002-8808-1620 Nelson Nelson Vera Aguilar https://orcid.org/0000-0002-5935-1935 Héctor Manterola Badilla https://orcid.org/0000-0001-8827-680X Giorgio Castellaro G https://orcid.org/0000-0003-0106-560X Víctor Hugo Parraguez Gamboa https://orcid.org/0000-0002-3621-2705

Resumen

Objetivo. Evaluar el efecto de dosis crecientes del glucósido cianogénico Linamarina, en la reducción de metano ruminal in vitro. Materiales y Métodos. Se empleó líquido ruminal de dos ovejas fistuladas de la raza Merino Precoz, con el que se inoculó un sustrato fermentativo constituido por heno de alfalfa (Medicago sativa) y grano de avena molido (Avena sativa L.), se adicionó solución buffer y Linamarina (pureza de ≥98%) en dosis crecientes, lo que se llevó a incubación por ocho horas in vitro. El metano se midió cada hora, con un monitor de gases infrarrojo. Resultados. De acuerdo con el incremento de las dosis de Linamarina (0, 6, 13, 20 y 26 mg/L), la concentración de metano disminuyó de forma lineal (p≤0.05) en (9.7, 9.2, 18.1 y 29.4%) respectivamente. Se observó una reducción significativa de metano con la dosis más alta de Linamarina. Conclusión. La Linamarina, en su estado puro, fue eficaz en la reducción de metano durante la fermentación ruminal in vitro. Por lo tanto, este estudio constituye una base para futuros experimentos que incluyan fuentes vegetales de Linamarina y otras variables ruminales, lo que puede conducir a encontrar estrategias para reducir los gases de efecto invernadero.

Palabras clave:

Detalles del artículo

Referencias

1. Bajželj B, Richards K, Allwood J, Smith P, Dennis J, Curmi E, Gilligan C. Importance of food-demand management for climate mitigation. Nature Climate Change. 2014; 4:924–929. DOI: https://doi.org/10.1038/nclimate2353

2. Dangal S, Tian H, Zhang B, Pan S, Lu C, Yang J. Methane emission from global livestock sector during 1890–2014: Magnitude, trends and spatiotemporal patterns. Global Change Biol. 2017; 23(10):4147–4161. DOI: https://doi.org/10.1111/gcb.13709

3. Edenhofer O, Pichs R, Sokona Y, Kadner S, Minx J, Brunner S, Agrawala S, Baiocchi G, Bashmakov IA, Blanco G, et al. Technical Summary. Mitigation Climate Change Contribution Work. 2014; 33–107. DOI: https://doi.org/10.1103/PhysRevD.70.106002

4. Hristov A, Oh J, Lee C, Meinen R, Montes F, Ott T, et al. Mitigation of greenhouse gas emissions in livestock production: a review of technical options for non-C02 emissions. FAO: ROMA; 2013. URL available in: http://www.fao.org/3/i3288e/i3288e.pdf

5. Mottet A, Henderson B, Opio C, Falcucci A, Tempio G, Silvestri S, Chesterman S, Gerber PJ. Climate change mitigation and productivity gains in livestock supply chains: insights from regional case studies. Regional Environmental Change. 2017; 17(1):129–141. DOI: https://doi.org/10.1007/s10113-016-0986-3

6. Patra A. Effects of essential oils on Rumen fermentation, microbial ecology and Ruminant production. Asian Journal of Animal and Veterinary Advances. 2011; 6:416–428. DOI: https://doi.org/10.3923/ajava.2011.416.428

7. Kamra D, Pawar M, Singh B. Effect of Plant Secondary Metabolites on Rumen Methanogens and Methane Emissions by Ruminants. Dietary Phytochemicals and Microbes. Springer, Dordrecht. 2012; 6:351-370. DOI: https://doi.org/10.1007/978-94-007-3926-0_12

8. Günal M, Pinski B, AbuGhazaleh A. Evaluating the effects of essential oils on methane production and fermentation under in vitro conditions. Ital J Anim Sci. 2017; 16(3):500–506. DOI: https://doi.org/10.1080/1828051X.2017.1291283

9. Tekeli A, Yıldız G, Drochner W, Steingass H. Effects of essence oil additives added to different feeds on methane production Efectos sobre la producción de metano de los aceites esencias añadiendo diferentes aditivos. Rev MVZ Cordoba. 2017; 22(2):5854–5866. DOI: https://doi.org/10.21897/rmvz.1023

10. Gomaa R, González M, Arredondo J, Castelán O, Molina L. Effect of tanniferous plants on in vitro digestion and methane production. Ecosistemas y Recursos Agropecuarios. 2017; 4:371. DOI: https://doi.org/10.19136/era.a4n11.1160

11. Phuong L, Khang D. Preston T. Methane production in an in vitro fermentation of cassava pulp with urea was reduced by supplementation with leaves from bitter, as opposed to sweet, varieties of cassava. Livest Res Rural Dev. 2015; 27(8):162 URL Available in: http://lrrd.cipav.org.co/lrrd27/8/phuo27162.html

12. Sornyotha S, Lay K, Ratanakhanokchai K. Purification and detection of linamarin from cassava root cortex by high performance liquid chromatography. Food Chemistry. 2007; 104:1750-1754. DOI: https://doi.org/10.1016/j.foodchem.2006.10.071

13. Phongphanith S, Preston T, Leng R. Effect of water spinach (Ipomoea aquatica) and cassava leaf meal (Manihot esculenta Crantz) with or without biochar on methane production in an in vitro rumen incubation using ensiled or dried cassava root meal as source of carbohydrate. Livest Res Rural Dev. 2016; 28:72. URL Available in: http://lrrd.cipav.org.co/lrrd28/5/phon28072.html

14. Theodorou M, Williams B, Dhanoa M, McAllan A, France J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol. 1994; 48(3-4):185–197. DOI: https://doi.org/10.1016/0377-8401(94)90171-6

15. Camacho L, Silva T, Palma M, Assunção A, Rodriguez L, Costa L, Detmann E. Evaluation of buffer solutions and urea addition for estimating the in vitro digestibility of feeds. J Anim Sci. 2019; 97(2):922-931.DOI: https://doi.org/10.1093/jas/sky464

16. Maherawati C, Nur M, Pranoto Y, Utami T. Effect of Cellulase Addition on Linamarin Hydrolysis in Cassava (Manihot esculenta) Slurry. Pak J Nutr. 2017; 16(12):914-920. DOI: https://doi.org/10.3923/pjn.2017.914.920

17 Inthapaya S, and Preston T. Methane production from urea-treated rice straw is reduced when the protein supplement is cassava leaf meal or fish meal compared with water spinach meal in a rumen in vitro fermentation. Livest Res Rural Dev. 2014; 26(9):159. URL Available in: http://www.lrrd.org/lrrd26/9/sang26159.html

18. Do H, Khoa T, Hao T, Preston T. Methane production in an in vitro rumen incubation is lower for leaves with low compared with high protein solubility. Livest Res Rural Dev. 2013; 25(7):134. URL Available in: http://lrrd.cipav.org.co/lrrd25/7/hqdo25134.htm

19. Hassan A. A review of secondary metabolites from plant materials for post harvest storage. Int J Pure Appl Sci Technol. 2011; 6(2):94–102. URL Available in: http://ijopaasat.in/yahoo_site_admin/assets/docs/3_IJPAST-168-V6N2.57221749.pdf

20. Vetter J. Plant cyanogenic glycosides. Toxicon. 2000; 38(1):11–36. DOI: https://doi.org/10.1016/s0041-0101(99)00128-2

21. Inthapanya S, Preston T, Nguyen D, Leng R. Effect of method of processing of cassava leaves on protein solubility and methane production in an in vitro incubation using cassava root as source of energy. Livest Res Rural Dev. 2012; 24(2):36. URL Available in: https://www.lrrd.cipav.org.co/lrrd24/2/sang24036.htm

22. Lascano C, Cárdenas E. Alternatives for methane emission mitigation in livestock systems. R. Bras. Zootec. 2010;(39)175-182. URL Available in: http://dx.doi.org/10.1590/S1516-35982010001300020

23. Thanh V, Preston T, Leng R. Effect on methane production of supplementing a basal substrate of molasses and cassava leaf meal with mangosteen peel (Garcinia mangostana) and urea or nitrate in an in vitro incubation. Livest Res Rural Dev 2011; 23(4):98. URL Available in: http://www.lrrd.org/lrrd23/4/than23098.htm

Descargas

La descarga de datos todavía no está disponible.