Evasión molecular de la activación del macrófago bovino por Mycobacterium avium subespecie paratuberculosis

Contenido principal del artículo

Autores

René Ramírez G Juan Maldonado E

Resumen

RESUMEN

El Mycobacterium avium subespecie paratuberculosis (MAP) es el agente causal de una enfermedad granulomatosica crónica, que afecta el tracto gastrointestinal de rumiantes domesticos y salvajes, conocida como la enfermedad de Johne o paratuberculosis. MAP es un microorganismo de crecimiento lento en cultivo, no obstante sobrevive in vivo en células fagocíticas mononucleares de los rumiantes, bajo condiciones de susceptibilidad individual, virulencia de la cepa infectante y estado inmune del individuo afectado. Una vez MAP es fagocitado por el macrófago bovino, tanto el macrófago como MAP activan: el uno para tratar de destruir a MAP y luego sufrir apoptosis y el otro para evadir su destrucción dentro del fagolisosoma del macrófago. El balance de dicha confrontación molecular determina el curso inicial de la infección hacia la eliminación eficiente del microorganismo o hacia el establecimiento de la infección, que culminará en los estadios III (clínico intermitente) y IV (clínica terminal) de la enfermedad de Johne. En la presente revisión se discuten los diferentes mecanismos moleculares por los cuales MAP evade la respuesta inmune, con énfasis en su comportamiento dentro de la vacuola fagocítica y como el agente establece mecanismos de sobrevivencia intracelular y altera la activación de los macrófagos del hospedero y de la respuesta inmune específica

Palabras clave:

Detalles del artículo

Referencias

1. Clarke C J. The pathology and pathogenesis of paratuberculosis in ruminants and other species. J Comp Pathol 1997; 116:217–261. http://dx.doi.org/10.1016/S0021-9975(97)80001-1

2. Stevenson K, Alvarez J, Bakker D, Biet F, de Juan L, Denham S, et al. Occurrence of Mycobacterium avium subspecies paratuberculosis across host species and European countries with evidence for transmission between wildlife and domestic ruminants. BMC Microbiol 2009; 9:212. doi:10.1186/1471-2180-9-212. http://dx.doi.org/10.1186/1471-2180-9-212

3. Francis J, Macturk HM, Madinaveitia J, Snow GA. Mycobactin, a growth factor for Mycobacterium johnei. I. Isolation from Mycobacterium phlei. Biochem J 1953; 55:596-607. http://dx.doi.org/10.1042/bj0550596

4. Matthews PR, McDiarmid A, Collins P, Brown A. The dependence of some strains of Mycobacterium avium on mycobactin for initial and subsequent growth. J Med Microbiol 1978; 11:53-57. http://dx.doi.org/10.1099/00222615-11-1-53

5. Zapata MM, Rodas JD, Maldonado JG. "paratuberculosis bovina: ¿conocemos la situación real de la enfermedad en la ganadería colombiana?" Rev Colomb Cienc Pecu 2008; 21:420-435.

6. Burrells C, Clarke CJ, Colston A, Kay JM, Porter J, Little D, et al. Interferon-gamma and interleukin-2 release by lymphocytes derived from the blood, mesenteric lymph nodes and intestines of normal sheep and those affected with paratuberculosis (Johne's disease). Vet Immunol Immunopathol 1999; 68:139-148. http://dx.doi.org/10.1016/S0165-2427(99)00022-7

7. Coussens PM, Verman N, Coussens MA, Elftman MD, McNulty AM. Cytokine gene expression in peripheral blood mononuclear cells and tissues of cattle infected with Mycobacterium avium subsp. paratuberculosis: evidence for an inherent proinflammatory gene expression pattern. Infect Immun 2004; 72:1409-1422. http://dx.doi.org/10.1128/IAI.72.3.1409-1422.2004

8. Verschoor CP, Pant SD, You Q, Kelton DF, Karrow NA. Gene expression profiling of PBMCs from Holstein and Jersey cows sub-clinically infected with Mycobacterium avium ssp. paratuberculosis. Vet Immunol Immunopathol 2010; 137:1-11. http://dx.doi.org/10.1016/j.vetimm.2010.03.026

9. Woo SR, Sotos J, Hart AP, Barletta R, Gand Czuprynski CJ. Bovine monocytes and a macrophage cell line differ in their ability to phagocytose and support the intracellular survival of Mycobacterium avium subsp. paratuberculosis. Vet Immunol Immunopathol 2006; 110:109–120. http://dx.doi.org/10.1016/j.vetimm.2005.09.010

10. Clarke CJ. The pathology and pathogenesis of paratuberculosis in ruminants and other species. J Comp Pathol 1997; 116:217–261. http://dx.doi.org/10.1016/S0021-9975(97)80001-1

11. Souza CD, Evanson OA, Weiss DJ. Mitogen activated protein kinasep38 pathway is an important component of the anti-inflammatory response in Mycobacterium avium subsp. paratuberculosis-infected bovine monocytes. Microb Pathogen 2006; 41:59–66. http://dx.doi.org/10.1016/j.micpath.2006.04.002

12. Armstrong J, Hart D. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 1971; 134:713–740. http://dx.doi.org/10.1084/jem.134.3.713

13. Souza CD, Weiss DJ, Evanson OA. Role of theMAPK-ERK pathway in regulating cytokine expression by Mycobacterium avium subsp. paratuberculosis- infected bovine monocytes. Am J Vet Res 2007; 68:625–630. http://dx.doi.org/10.2460/ajvr.68.6.625

17. Adams JL, Czuprynski CJ. Mycobacterial cell wall components induce the production of TNF-alpha, IL-1, and IL-6 by bovine monocytes and the murine macrophage cell line RAW 264.7. Microb Pathog 1994; 16:401-411. http://dx.doi.org/10.1006/mpat.1994.1040

15. Souza CD, Evanson OA, Sreevatsan S, Weiss DJ. Cell membrane receptors on bovine mononuclear phagocytes involved in phagocytosis of Mycobacterium avium subsp paratuberculosis. Am J Vet Res 2007; 68:975-980. http://dx.doi.org/10.2460/ajvr.68.9.975

16. Whittington RJ, Windsor PA. In utero infection of cattle with Mycobacterium avium subsp. paratuberculosis: a critical review and meta-analysis. Vet J 2009; 179:60-69. http://dx.doi.org/10.1016/j.tvjl.2007.08.023

17. Aly SS, Thurmond MC. Evaluation of Mycobacterium avium subsp paratuberculosis infection of dairy cows attributable to infection status of the dam. J Am Vet Med Assoc 2005; 227:450-454. http://dx.doi.org/10.2460/javma.2005.227.450

18. Wu CW, Livesey M, Schmoller SK, Manning EJ, Steinberg H, Davis WC, et al. Invasion and persistence of Mycobacterium paratuberculosis during early stages of Johne's disease in calves. Infect Immun 2007; 75:2110-2119. http://dx.doi.org/10.1128/IAI.01739-06

19. Secott TE, Lin TL, Wu CC. Mycobacterium avium subsp. paratuberculosis fibronectin attachment protein facilitates M-cell targeting and invasion through a fibronectin bridge with host integrins. Infect Immun 2004; 72:3724-3732. http://dx.doi.org/10.1128/IAI.72.7.3724-3732.2004

20. Momotani E, Whipple DL, Thiermann AB, Cheville NF. Role of M cells and macrophages in the entrance of Mycobacterium paratuberculosis into domes of ileal Peyer's patches in calves. Vet Pathol 1988; 25:131-137. http://dx.doi.org/10.1177/030098588802500205

21. Khalifeh MS, Stabel JR. Effects of gamma interferon, interleukin-10, and transforming growth factor beta on the survival of Mycobacterium avium subsp. paratuberculosis in monocyte-derived macrophages from naturally infected cattle. Infect Immun 2004; 72:1974-1982. http://dx.doi.org/10.1128/IAI.72.4.1974-1982.2004

22. Buza JJ, Hikono H, Mori Y. Neutralization of interleukin-10 significantly enhances gamma interferon expression in peripheral blood by stimulation with Johnin purified protein derivative and by infection with Mycobacterium avium subsp. paratuberculosis in experimentally infected cattle with paratuberculosis. Infect Immun 2004; 72:2425-2428. http://dx.doi.org/10.1128/IAI.72.4.2425-2428.2004

23. Jorgensen JB. Survival of Mycobacterium paratuberculosis in slurry. Nord Vet Med 1977; 29:267-270.

24. Nigou J, Zelle-Rieser C, Gilleron M, Thurnjer M, Puzo G. Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol 2001; 166:7477-7485. http://dx.doi.org/10.4049/jimmunol.166.12.7477

25. Biet F, Bay S, Thibault VC, Euphrasie D, Grayon M, Ganneau C, et al. Lipopentapeptide induces a strong host humoral response and distinguishes Mycobacterium avium subsp. paratuberculosis from M. avium subsp. avium. Vaccine 2008; 26:257-268. http://dx.doi.org/10.1016/j.vaccine.2007.10.059

26. Dheenadhayalan V, Shin KS, Chang CF, Chang CD, Wang SJ, McDonough S, et al. Cloning and characterization of the genes coding for antigen 85A, 85B and 85C of Mycobacterium avium subsp. paratuberculosis. DNA Seq 2002; 13:287-294. http://dx.doi.org/10.1080/1042517021000019269

27. Gatfield J, Pieters J. Molecular mechanisms of host-pathogen interaction: entry and survival of mycobacteria in macrophages. Adv Immunol 2003; 81:45-96. http://dx.doi.org/10.1016/S0065-2776(03)81002-7

28. Ferwerda G, Kullberg BJ, de Jong DJ, Girardin SE, Langenberg DM, van Crevel R, et al. Mycobacterium paratuberculosis is recognized by Toll-like receptors and NOD2. J Leukoc Biol 2007; 82:1011-1018. http://dx.doi.org/10.1189/jlb.0307147

29. Weiss DJ, Souza CD. Review paper: modulation of mononuclear phagocyte function by Mycobacterium avium subsp. paratuberculosis. Vet Pathol 2008; 45:829-841. http://dx.doi.org/10.1354/vp.45-6-829

30. Weiss DJ, Evanson OA, McClenahan DJ, Abrahamsen MS, Walcheck BK. Regulation of expression of major histocompatibility antigens by bovine macrophages infected with Mycobacterium avium subsp. paratuberculosis or Mycobacterium avium subsp. avium. Infect Immun 2001; 69:1002-1008. http://dx.doi.org/10.1128/IAI.69.2.1002-1008.2001

31. Chiodini RJ, Davis WC. The cellular immunology of bovine paratuberculosis: the predominant response is mediated by cytotoxic gamma/delta T lymphocytes which prevent CD4+ activity. Microb Pathog 1992; 13:447-463. http://dx.doi.org/10.1016/0882-4010(92)90012-D

32. Bassey EO, Collins MT. Study of T-lymphocyte subsets of healthy and Mycobacterium avium subsp. paratuberculosis-infected cattle. Infect Immun 1997; 65:4869-4872.

33. Koo HC, Park YH, Hamilton MJ, Barrington GM, Davies CJ, Kim JB, et al. Analysis of the immune response to Mycobacterium avium subsp. paratuberculosis in experimentally infected calves. Infect Immun 2004; 72:6870-6883. http://dx.doi.org/10.1128/IAI.72.12.6870-6883.2004

34. Sommer S, Pudrith CB, Colvin CJ, Coussens PM. Mycobacterium avium subspecie paratuberculosis suppresses expression of IL-12p40 and iNOS genes induced by signalling through CD40 in bovine monocyte-derived macrophages. Vet Immunol Immunopathol 2009; 128:44-52. http://dx.doi.org/10.1016/j.vetimm.2008.10.036
http://dx.doi.org/10.1016/j.vetimm.2008.10.294

35. de Almeida DE, Colvin CJ, Coussens PM. Antigen–specific regulatory T cells in bovine paratuberculosis. Vet Immunol Immunopathol 2008; 125:234–245. http://dx.doi.org/10.1016/j.vetimm.2008.05.019

36. Haddad JJ, Saade NE, Safieh-Garanedian B. Interleukin-10 and the regulation of mitogen-activated protein kinases: are these signaling modules targets for the anti-inflammatory action of this cytokine? Cell Signal 2003; 15:255–267. http://dx.doi.org/10.1016/S0898-6568(02)00075-X

37. Koul A, Herget T, Klebl B, Ullrich A. Interplay between mycobacteria and host signaling pathways. Nature Rev 2004; 2:189–202.

38. Schorey JS, Cooper AM. Macrophage signaling upon mycobacterial infection: the MAP kinases lead the way. Cell Micro 2003; 5:133-142. http://dx.doi.org/10.1046/j.1462-5822.2003.00263.x

39. Blumenthal A, Ehlers S, Ernst M, Flad HD, Reiling N. Control of mycobacterial replication in human macrophages: roles of extracellular signal-regulated kinases 1 and 2 and p38 mitogen-activated protein kinase pathways. Infect Immun 2002; 70:4961–4967. http://dx.doi.org/10.1128/IAI.70.9.4961-4967.2002

40. Khalifeh MS, Stabel JR. Upregulation of transforming growth factor-beta and interleukin-10 in cows with clinical Johne's disease. Vet Immunol Immunopathol 2004: 99:39-46. http://dx.doi.org/10.1016/j.vetimm.2004.01.009

41. Hao XR, Cao DL, Hu YW, Li XX, Liu XH, Xiao J, et al. IFN-gamma down-regulates ABCA1 expression by inhibiting LXRalpha in a JAK/STAT signaling pathway-dependent manner. Atherosclerosis 2009; 203:417-428. http://dx.doi.org/10.1016/j.atherosclerosis.2008.07.029

42. Zhao B, Collins MT, Czuprynski CJ. Effects of gamma interferon and nitric oxide on the interaction of Mycobacterium avium subsp. paratuberculosis with bovine monocytes. Infect Immun 1997; 65:1761–1766.

43. McBribe JM, Jung T, de Vries JE, Aversa G. IL-10 alters DC function via modulation of cell surface molecules resulting in impaired T-cell responses. Cell Immunol 2002; 217:162–172. http://dx.doi.org/10.1016/S0008-8749(02)00007-2

44. Lei L, Hostetter JM. Limited phenotypic and functional maturation of bovine monocyte-derived dendritic cells following Mycobacterium avium subspecies paratuberculosis infection In vitro. Vet Immunol Immunopathol 2007; 120:177-186. http://dx.doi.org/10.1016/j.vetimm.2007.06.031

45. Olsen I, Boysen P, Kulberg S, Hope JC, Jungersen G, Storset AK. Bovine NK cells can produce gamma interferon in response to the secreted mycobacterial proteins ESAT-6 and MPP14 but not in response to MPB70. Infect Immun 2005; 73:5628-5635. http://dx.doi.org/10.1128/IAI.73.9.5628-5635.2005

46. Conti P, Kempuraj D, Kandere K, Di Gioacchino M, Barbacane RC, Castellani ML, et al. IL-10, an inflammatory/inhibitory cytokine, but not always. Immunol Lett 2003; 86:123–1299. http://dx.doi.org/10.1016/S0165-2478(03)00002-6

47. Motiwala AS, Janagama HK, Paustian ML, Zhu X, Bannantine JP, Kapur V, et al. Comparative transcriptional analysis of human macrophages exposed to animal and human isolates of Mycobacterium avium subspecies paratuberculosis with diverse genotypes. Infect Immun 2006; 74:6046-6056. http://dx.doi.org/10.1128/IAI.00326-06

48. Sut A, Sirugue S, Sixou S, Lakhdar-Ghazal F, Tocanne JF, Laneele G. Mycobacteria glycolipids as potential pathogenity effectors: alterations of model and natural membranes. Biochemisty 1990; 29:8498–8502. http://dx.doi.org/10.1021/bi00488a042

49. Fratazzi C, Arbeit RD, Carini C, Balcewicz-Sablinska MK, Keane J, Kornfeld H, Remold HG. Macrophage apoptosis in mycobacterial infections. J Leukocyte Biol 1999; 66:763-764.

50. Coussens PM, Pudrith CB, Skovgaard K, Ren X, Suchyta SP, Stabel JR, et al. Johne's disease in cattle is associated with enhanced expression of genes encoding IL-5, GATA-3, tissue inhibitors of matrix metalloproteinases 1 and 2, and factors promoting apoptosis in peripheral blood mononuclear cells. Vet Immunol Immunopathol 2005; 105:221-234. http://dx.doi.org/10.1016/j.vetimm.2005.02.009

51. Jahraus A, Tjelle TE, Beerg T, Habermann A, Storrie B, Ulrich O, Griffiths G. In vitro fusion of phagosomes with different endocytic organelles from J774 macrophages. J Biol Chem 1998; 46:30379–30390. http://dx.doi.org/10.1074/jbc.273.46.30379

52. Knutson KL, Hmama Z, Herrera-Velit P, Rochford R, Reimer NE. Lipoarabinomannan of Mycobacterium tuberculosis promotes tyrosine dephosphorylation and inhibition of mitogen-activated protein kinase in human mononuclear phagocytes. J Biol Chem 1998; 273:645–652. http://dx.doi.org/10.1074/jbc.273.1.645

53. Hackam DJ, Rotstein OD, Zhang WJ, Demaurex N, Woodside M, Tsai O, et al. Regulation of phagosomal acidification. J Biol Chem 1997; 272:29810—29820. http://dx.doi.org/10.1074/jbc.272.47.29810

54. Coussens PM, Colvin CJ, Wiersma K, Abouzied A, Sipkovsky S. Gene expression profiling of peripheral blood mononuclear cells from cattle infected with Mycobacterium paratuberculosis. Infect Immun 2002; 70:5494-5502. http://dx.doi.org/10.1128/IAI.70.10.5494-5502.2002

55. Coussens PM, Colvin CJ, Rosa GJ, Perez Laspiur J, Elftman MD. Evidence for a novel gene expression program in peripheral blood mononuclear cells from Mycobacterium avium subsp. paratuberculosis-infected cattle. Infect Immun 2003; 71:6487-6498. http://dx.doi.org/10.1128/IAI.71.11.6487-6498.2003

56. Weiss DJ, Evanson OA, Deng M, Abrahamsen MS. Gene expression and antimicrobial activity of bovine macrophages in responses to Mycobacterium avium subsp. paratuberculosis. Vet Pathol 2004; 41:326-337. http://dx.doi.org/10.1354/vp.41-4-326

57. Janagama HK, Lamont EA, George S, Bannantine JP, Xu WW, Tu ZJ, et al. Primary transcriptomes of Mycobacterium avium subsp. paratuberculosis reveal proprietary pathways in tissue and macrophages. BMC Genomics 2010; 11:561. http://dx.doi.org/10.1186/1471-2164-11-561

58. Sechi LA, Felis GE, Ahmed N, Paccagnini D, Usai D, Ortu S, et al. Genome and transcriptome scale portrait of sigma factors in Mycobacterium avium subsp. paratuberculosis. Infect Genet Evol 2007; 7:424-432. http://dx.doi.org/10.1016/j.meegid.2007.01.001

59. Gumber S, Taylor DL, Marsh IB, Whittington RJ. Growth pattern and partial proteome of Mycobacterium avium subsp. paratuberculosis during the stress response to hypoxia and nutrient starvation. Vet Microbiol 2009; 133:344-357. http://dx.doi.org/10.1016/j.vetmic.2008.07.021

60. Gomes MS, Paul S, Moreira AL, Appelbereg R, Rabinovitch M, Kaplan G: Survival of Mycobacterium avium and Mycobacterium tuberculosis in acidified phagosomes of murine macrophages. Infect Immun 1999; 67:3199–3206.

Descargas

La descarga de datos todavía no está disponible.