Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Productividad y características de la canal de ovinos suplementados con propionato de calcio

Productivity and carcass characteristics of sheep supplemented with calcium propionate



Cómo citar
Flores-Santiago, E. J., González-Garduño, R. ., Cobos-Peralta, M. A. ., Mendoza-Pedrosa, S. I. ., Alejos de la Fuente, J. I. ., Cadena-Villegas, S. ., Díaz-Sánchez, E. L. ., & Bárcena-Gama, J. R. . (2022). Productividad y características de la canal de ovinos suplementados con propionato de calcio. Revista MVZ Córdoba, 27(s), e2525. https://doi.org/10.21897/rmvz.2525

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Ever Jesus Flores-Santiago
Roberto González-Garduño
Mario Antonio Cobos-Peralta
Sergio Iban Mendoza-Pedrosa
José Isidro Alejos de la Fuente
Said Cadena-Villegas
Erick Lorenzo Díaz-Sánchez
José Ricardo Bárcena-Gama

Ever Jesus Flores-Santiago,

Universidad Autónoma Chapingo, Unidad Regional Universitaria Sur Sureste, C.P. 86800, km 7.5 Carretera Teapa-Vicente Guerrero, Teapa, Tabasco, México.


Roberto González-Garduño,

Universidad Autónoma Chapingo, Unidad Regional Universitaria Sur Sureste, C.P. 86800, km 7.5 Carretera Teapa-Vicente Guerrero, Teapa, Tabasco, México.


Mario Antonio Cobos-Peralta,

Colegio de Postgraduados, Campus Montecillo, Programa Posgrados en Recursos Genéticos y Productividad – Ganadería, C.P. 56230, km 36.5. Carretera Federal México-Texcoco, Texcoco, Estado de México, México.


Sergio Iban Mendoza-Pedrosa,

Colegio de Postgraduados, Campus Montecillo, Programa Posgrados en Recursos Genéticos y Productividad – Ganadería, C.P. 56230, km 36.5. Carretera Federal México-Texcoco, Texcoco, Estado de México, México.


José Isidro Alejos de la Fuente,

Universidad Autónoma Chapingo, Departamento de Zootecnia, C.P. 56230, km 38.5. Carretera Federal México-Texcoco, Texcoco, Estado de México, México.


Said Cadena-Villegas,

Colegio de Postgraduados, Campus Tabasco, Programa de Maestría en Ciencias de la Producción Agroalimentaria en el Trópico, C.P. 86500, km


Erick Lorenzo Díaz-Sánchez,

Universidad Autónoma Chapingo, Unidad Regional Universitaria Sur Sureste, C.P. 86800, km 7.5 Carretera Teapa-Vicente Guerrero, Teapa, Tabasco, México


José Ricardo Bárcena-Gama,

Colegio de Postgraduados, Campus Montecillo, Programa Posgrados en Recursos Genéticos y Productividad – Ganadería, C.P. 56230, km 36.5.


Objetivo. Evaluar el efecto de la inclusión de propionato de calcio (PCa) sobre variables productivas y características de la canal en corderos en finalización. Materiales y métodos. Se utilizaron 24 coderos machos de la cruza Dorper*Pelibuey de 5 meses de edad, con un peso corporal promedio (μ±SD) de 27±2.7. Fueron asignados a uno de tres tratamientos [control (CON) y dos niveles de PCa: 10 y 20 g/kg de MS] en un diseño completamente al azar (3 tratamientos, 8 repeticiones por tratamiento, considerando cada cordero como una unidad experimental). Las variables de respuesta se redujeron a 1 valor medio para cada cordero, y los datos se analizaron en SAS versión 9.4 usando Proc Mixed. Resultados. La ganancia diaria de peso (GDP), conversión (CA) y eficiencia alimenticia (EF) fueron mayores en 13, 20 y 24%, respectivamente por la inclusión de 20 g PCa/kg MS (p≤0.05). El peso de la canal fría (PCF), rendimiento en canal caliente (RCC) y rendimiento en canal fría (RCF) fueron mayores al incrementar el nivel de inclusión de PCa (p≤0.05). Conclusiones. La suplementación con PCa en dosis de hasta 20g/kg en dietas de finalización puede mejorar los parámetros productivos y de rendimiento en canal sin afectar el consumo de materia seca (DMI).


Visitas del artículo 423 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Zhang F, Nan X, Wang H, Guo Y, Xiong B. Research on the Applications of Calcium Propionate in Dairy Cows: A Review. Animals. 2020; 10(8):1336. https://doi.org/10.3390/ani10081336
  2. Dong Y, Bae HD, McAllister TA, Mathison GW, Cheng K-J. Lipid-induced depression of methane production and digestibility in the artificial rumen system (RUSITEC). Can J Anim Sci. 1997; 77(2):269-278. https://doi.org/10.4141/A96-078
  3. Kennedy KM, Donkin SS, Allen MS. Effect of uncouplers of oxidative phosphorylation on metabolism of propionate in liver explants from dairy cows. J Dairy Sci. 2021; 104(3):3018-3031. https://doi.org/10.3168/jds.2020-19536
  4. Larsen M, Kristensen NB. Precursors for liver gluconeogenesis in periparturient dairy cows. Animal. 2013; 7(10):1640-1650. https://doi.org/10.1017/S1751731113001171
  5. Loncke C, Nozière P, Vernet J, Lapierre H, Bahloul L, Al-Jammas M, et al. Net hepatic release of glucose from precursor supply in ruminants: a meta-analysis. Animal. 2020; 14(7):1422-1437. https://doi.org/10.1017/S1751731119003410
  6. Liu Q, Wang C, Guo G, Yang WZ, Dong KH, Huang YX, et al. Effects of calcium propionate on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. J Agric Sci. 2009; 147(2):201-209. https://doi.org/10.1017/S0021859609008429
  7. Liu Q, Wang C, Yang WZ, Guo G, Yang XM, He DC, et al. Effects of calcium propionate supplementation on lactation performance, energy balance and blood metabolites in early lactation dairy cows. J Anim Physiol Anim Nutr. 2010; 94(5):605-614. https://doi.org/10.1111/j.1439-0396.2009.00945.x
  8. Zhang X, Wu X, Chen W, Zhang Y, Jiang Y, Meng Q, et al. Growth performance and development of internal organ, and gastrointestinal tract of calf supplementation with calcium propionate at various stages of growth period. PloS One. 2017; 12(7):e0179940. https://doi.org/10.1371/journal.pone.0179940
  9. Martínez-Aispuro JA, Sánchez-Torres MT, Mendoza-Martínez GD, Mora JLC, Figueroa-Velasco JL, Ayala-Monter MA, et al. Addition of calcium propionate to finishing lamb diets. Vet México. 2018; 5(4):1-9. https://doi.org/10.22201/fmvz.24486760e.2018.4.470
  10. Cifuentes-Lopez O, Lee-Rangel HA, Mendoza GD, Delgado-Sanchez P, Guerrero-Gonzalez L, Chay-Canul A, et al. Effects of Dietary Calcium Propionate Supplementation on Hypothalamic Neuropeptide Messenger RNA Expression and Growth Performance in Finishing Rambouillet Lambs. Life. 2021; 11(6):566. https://doi.org/10.3390/life11060566
  11. Orellana Rivas RM, Gutierrez-Oviedo FA, Komori GH, Beihling VV, Marins TN, Azzone J, et al. Effect of supplementation of a mixture of gluconeogenic precursors during the transition period on performance, blood metabolites and insulin concentrations and hepatic gene expression of dairy cows. Anim Feed Sci Technol. 2021; 272:114791. https://doi.org/10.1016/j.anifeedsci.2020.114791
  12. Churakov M, Karlsson J, Edvardsson Rasmussen A, Holtenius K. Milk fatty acids as indicators of negative energy balance of dairy cows in early lactation. Animal. 2021; 15(7):100253. https://doi.org/10.1016/j.animal.2021.100253
  13. Cao N, Wu H, Zhang XZ, Meng QX, Zhou ZM. Calcium propionate supplementation alters the ruminal bacterial and archaeal communities in pre- and postweaning calves. J Dairy Sci. 2020; 103(4):3204-3218. https://doi.org/10.3168/jds.2019-16964
  14. Lee-Rangel HA, Mendoza GD, González SS. Effect of calcium propionate and sorghum level on lamb performance. Anim Feed Sci Technol. 2012; 177(3-4):237-241. https://doi.org/10.1016/j.anifeedsci.2012.08.012
  15. Maldini G, Kennedy KM, Allen MS. Temporal effects of ruminal infusion of propionic acid on hepatic metabolism in cows in the postpartum period. J Dairy Sci. 2019; 102(11):9781-9790. https://doi.org/10.3168/jds.2019-16437
  16. Zhang XZ, Meng QX, Lu L, Cui ZL, Ren LP. The effect of calcium propionate supplementation on performance, meat quality, and mRNA expression of finishing steers fed a high-concentrate diet. J Anim Feed Sci. 2015; 24(2):100-106. https://doi.org/10.22358/jafs/65634/2015
  17. Zhang Q, Koser SL, Bequette BJ, Donkin SS. Effect of propionate on mRNA expression of key genes for gluconeogenesis in liver of dairy cattle. J Dairy Sci. 2015; 98(12):8698-8709. https://doi.org/10.3168/jds.2015-9590
  18. Van Soest PJ, Robertson JB, Lewis BA. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J Dairy Sci. 1991; 74(10):3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  19. SAS. User ́s guide Statistics. Version 9.0 Cary: SAS Institute Inc., 2002.
  20. Radojičić B, Joksimović-Todorović M, Bukvić M, Simeunović P, Kakishev M, Pračić N. The influence of sodium propionate on blood glucose, insulin and cortisol concentrations in calves of different ages. Acta Vet Brno. 2016; 85(2):127-132. https://doi.org/10.2754/avb201685020127
  21. Gualdrón-Duarte LB, Allen MS. Fuels derived from starch digestion have different effects on energy intake and metabolic responses of cows in the postpartum period. J Dairy Sci. 2018; 101(6):5082-5091. https://doi.org/10.3168/jds.2017-13607
  22. Mendoza-Martínez GD, Pinos-Rodríguez JM, Lee-Rangel HA, Hernández-García PA, Rojo-Rubio R, Relling A. Effects of dietary calcium propionate on growth performance and carcass characteristics of finishing lambs. Anim Prod Sci. 2016; 56(7):1194-1198. https://doi.org/10.1071/AN14824
  23. Bradford BJ, Allen MS. Phlorizin administration does not attenuate hypophagia induced by intraruminal propionate infusion in lactating dairy cattle. J Nutr. 2007; 137(2):326-330. https://doi.org/10.1093/jn/137.2.326
  24. Kennedy KM, Allen MS. Hepatic metabolism of propionate relative to meals for cows in the postpartum period. J Dairy Sci. 2019; 102(9):7997-8010. https://doi.org/10.3168/jds.2018-15907
  25. King TM, Beard JK, Norman MM, Wilson HC, Macdonald JM, Mulliniks JT. Effect of supplemental rumen undegradable protein and glucogenic precursors on digestibility and energy metabolism in sheep. Transl Anim Sci. 2019; 3(1):1714-1718. https://doi.org/10.1093/tas/txz064
  26. Berthelot V, Bas P, Schmidely P, Duvaux-Ponter C. Effect of dietary propionate on intake patterns and fatty acid composition of adipose tissues in lambs. Small Rumin Res. 2001; 40(1):29-39. https://doi.org/10.1016/S0921-4488(00)00217-0
  27. Cannas A, Tedeschi LO, Atzori AS, Lunesu MF. How can nutrition models increase the production efficiency of sheep and goat operations? Anim Front. 2019; 9(2):33-44. https://doi.org/10.1093/af/vfz005
  28. Zinn RA, Barreras A, Owens FN, Plascencia A. Performance by feedlot steers and heifers: daily gain, mature body weight, dry matter intake, and dietary energetics. J Anim Sci. 2008; 86(10):2680-2689. https://doi.org/10.2527/jas.2007-0561
  29. Wang Y, Wang Q, Dai C, Li J, Huang P, Li Y, et al. Effects of dietary energy on growth performance, carcass characteristics, serum biochemical index, and meat quality of female Hu lambs. Anim Nutr. 2020; 6(4):499-506. https://doi.org/10.1016/j.aninu.2020.05.008
  30. Junkuszew A, Nazar P, Milerski M, Margetin M, Brodzki P, Bazewicz K. Chemical composition and fatty acid content in lamb and adult sheep meat. Arch Anim Breed. 2020; 63(2):261-268. https://doi.org/10.5194/aab-63-261-2020
  31. Carvalho VB, Leite RF, Almeida MTC, Paschoaloto JR, Carvalho EB, Lanna DPD, et al. Carcass characteristics and meat quality of lambs fed high concentrations of crude glycerin in low-starch diets. Meat Sci. 2015; 110:285-292. https://doi.org/10.1016/j.meatsci.2015.08.001
  32. Brant LMS, de Freitas Júnior JE, Pereira FM, Pina D dos S, Santos SA, Leite LC, et al. Effects of alternative energy and protein sources on performance, carcass characteristics, and meat quality of feedlot lambs. Livest Sci. 2021; 251:104611. https://doi.org/10.1016/j.livsci.2021.104611

Sistema OJS 3.4.0.3 - Metabiblioteca |