Síntesis, composición y modificación de la grasa de la leche bovina: Un nutriente valioso para la salud humana

Contenido principal del artículo

Autores

Joaquin Angulo Liliana Mahecha Martha Olivera

Resumen

Se presenta una revisión sobre la composición, estructura y mecanismo de síntesis de la grasa de la leche en la glándula mamaria bovina y del efecto de la suplementación con ácidos grasos insaturados (AGI) sobre la cantidad y calidad de la grasa. Se resalta la importancia de la suplementación con aceites vegetales más aceite de pescado; se sugiere no generalizar el efecto de AGI como negativo sobre la cantidad de grasa de la leche; se muestra la necesidad de relacionar diferentes AGI con la vía regulatoria SREBP y con diferentes enzimas lipogénicas; y se incentiva la investigación del efecto de AGI sobre la composición de ácidos grasos de la leche y su distribución posicional dentro de la estructura lipídica.

Palabras clave:

Detalles del artículo

Referencias

1. Mahecha L, Angulo J, Salazar B, Cerón M, Gallo J, Molina CH et al. Supplementation with bypass fat in silvopastoral systems diminishes the ratio of milk saturated/unsaturated fatty acids. Trop Anim Health Prod 2008; 40:209-216. http://dx.doi.org/10.1007/s11250-007-9082-5

2. Bernard L, Leroux C, Chilliard Y. Expression and Nutritional Regulation of Lipogenic Genes in the Ruminant Lactating Mammary Gland. Adv Exp Med Biol 2008; 606:67-108. http://dx.doi.org/10.1007/978-0-387-74087-4_2

3. Cruz-Hernandez C, Kramer JKG,† Kennelly JJ, Glimm DR, Sorensen BM, Okine EK et al. Evaluating the Conjugated Linoleic Acid and trans 18:1 Isomers in Milk Fat of Dairy Cows Fed Increasing Amounts of Sunflower Oil and a Constant Level of Fish Oil. J Dairy Sci 2007; 90:3786–3801. http://dx.doi.org/10.3168/jds.2006-698

4. Palmquist DL, Griinari JM. Milk fatty acid composition in response to reciprocal combinations of sunflower and fish oils in the diet. Anim Feed Sci Technol 2006; 131:358-369. http://dx.doi.org/10.1016/j.anifeedsci.2006.05.024

5. Spitsberg VL. Bovine milk fat globule membrane as a potential nutraceutical. J Dairy Sci 2005; 88:2289-2294. http://dx.doi.org/10.3168/jds.S0022-0302(05)72906-4

6. Jensen RG, Ferris AM, Lammi-Keefe CJ. Symposium: Milk fat composition, function and potential for change. The composition of milk fat. J Dairy Sci 1991; 74:3228. http://dx.doi.org/10.3168/jds.S0022-0302(91)78509-3

7. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, Murphy RC et al. A comprehensive classification system for lipids. J Lipid Res 2005; 46(5):839- 61. http://dx.doi.org/10.1194/jlr.E400004-JLR200

8. Smith LM, Lowry RR. Fatty Acid Composition of the Phospholipids and Other Lipids in Milk. J Dairy Sci 1962; 45:581-588. http://dx.doi.org/10.3168/jds.S0022-0302(62)89454-5

9. Månsson HL. Fatty acids in bovine milk fat. J Food Nutr Res 2008; 52. DOI: 10.3402/fnr.v52i0.1821. http://dx.doi.org/10.3402/fnr.v52i0.1821

10. Hawke J C. The distribution of fatty acids between the a'-and b- positions of the glycerophospholipids of buttermilk. J Lipid Research 1963; 4(3):255-259.

11. Heid HW, Keenan TW. Intracellular origin and secretion of milk fat globules. Eur J Cell Biol 2005; 84(2-3):245-58.

12. Bauman DE, Perfield JW, Harvatine KJ, Baumgard LH. Regulation of Fat Synthesis by Conjugated Linoleic Acid: Lactation and the Ruminant model. J Nutr 2008; 138(2):403-409.

13. Stein O, Stein Y. Lipid synthesis, intracellular transport, and secretion II. Electron Microscopic Radioautographic Study of the Mouse Lactating Mammary Gland. J Cell Biol 1967; 34:251-263. http://dx.doi.org/10.1083/jcb.34.1.251

14. Reinhardt TA, Lippolis JD. Bovine milk fat globule membrane proteome. J Dairy Res 2006; 73(4):406-416. http://dx.doi.org/10.1017/S0022029906001889

15. Wooding FBP. The mechanism of secretion of the milk fat globule. J Cell Sci 1971; 9:805-821.

16. Clegg RA, Barber MC, Pooley L, Ernens I, Larondelleb Y, Traversa MT. Milk fat synthesis and secretion: molecular and cellular aspects. Livest Prod Sci 2001; 70:3–14. http://dx.doi.org/10.1016/S0301-6226(01)00194-4

17. Angulo J, Mahecha L, Giraldo CA, Olivera M. Prostaglandinas y grasa de la leche. Síntesis a partir de ácidos grasos poliinsaturados, en bovinos. En: Bioquímica, nutrición y alimentación de la vaca. Medellín-Colombia: Editorial Biogénesis; 2005.

18. Angulo J, Olivera M. Fisiología de la producción láctea en bovinos: Involución de la glándula mamaria, láctogenesis, galactopoyesis y eyección de la leche. En: Buenas Prácticas de producción de leche: contexto socioeconómico, morfofisiológico, sanitario y normativo. MedellínColombia: Editorial Biogénesis; 2008.

19. Chilliard Y, Ferlay A, Mansbridge RM, Doreau M. Ruminant milk fat plasticity: nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann Zoot 2000; 49:181-205. http://dx.doi.org/10.1051/animres:2000117

20. DePeters EJ, German JB, Taylor SJ, Essex ST, Perez-Monti H. Fatty Acid and Triglyceride Composition of Milk Fat from Lactating Holstein Cows in Response to Supplemental Canola Oil. J Dairy Sci 2001; 84:929–936. http://dx.doi.org/10.3168/jds.S0022-0302(01)74550-X

21. Cooper G.M. The Cell: A Molecular Approach 2d ed. Amer. Soc. Microbiol., Washington: and Sinauer Assoc., Sunderland, MA. Cap III: Cell Structure and function; 2000.

22. Moon YS, Latasa MJ, Griffin MJ, Sul HS. Suppression of fatty acid synthase promoter by polyunsaturated fatty acids. J Lipid Res 2002; 43(5):691-8.

23. Peterson D, Matitashvilli E, Bauman D.The inhibitory effect of trans-10 cis- 12 CLA on lipid synthesis in bovine mammary epithelial cells involves reduced proteolytic activation of the transcription factor SREBP-1. J nutr 2004; 134 (10):2523-2527.

24. Jayan G, and Herbein J. "Healthier" dairy fat using trans-vaccenic acid. Nutr Food Sci 30 (6):304–309, 2000.

25. Keating A , Kennelly J, Zhao F. Characterization and regulation of the bovine stearoyl-CoA desaturase gene promoter. Biochem Biophys Res Commun 2006; 344:233–240. http://dx.doi.org/10.1016/j.bbrc.2006.03.133

26. Hansen HO, Knudsen J. Effect of exogenous long-chain fatty acids on lipid biosynthesis in dispersed ruminant mammary gland epithelial cells: Esterification of long-chain exogenous fatty acids. J Dairy Sci 1987; 70: 1344– 1349. http://dx.doi.org/10.3168/jds.S0022-0302(87)80154-6

27. Yonezawa T, Yonekura S, Kobayashi Y, Hagino A, Katoh A, Obara Y. Effects of Long-Chain Fatty Acids on Cytosolic Triacylglycerol Accumulation and Lipid Droplet Formation in Primary Cultured Bovine Mammary Epithelial Cells. J Dairy Sci 2004; 87:2527–2534. http://dx.doi.org/10.3168/jds.S0022-0302(04)73377-9

28. Enjalbert F, Nicot MC, Bayourthe C, Moncoulon R. Odenal Infusions of Palmitic, Stearic or Oleic Acids Differently Affect Mammary Gland Metabolism of Fatty Acids in Lactating Dairy Cows. J Nutr 1998; 128(9):1525-32.

29. Ahnadi CE, Beswick N, Delbecchi L, Kennelly JJ, Lacasse P. Addition of fish oil to diets for dairy cows. II. Effects on milk fat and gene expression of mammary lipogenic enzymes. J Dairy Res 2002; 69(4):521-31. http://dx.doi.org/10.1017/S0022029902005769

30. Rego OA, Rosaa HJD, Portugalb P, Cordeiroa R, Borbaa AES, Vouzelaa CM et al. Influence of dietary fish oil on conjugated linoleic acid, omega-3 and other fatty acids in milk fat from grazing dairy cows Livest Prod Sci 2005; 95:27– 33.

31. Harvatine K, Bauman DE. SREBP1 and Thyroid Hormone Responsive Spot 14 (S14) Are Involved in the Regulation of Bovine Mammary Lipid Synthesis during Diet-Induced Milk Fat Depression and Treatment with CLA. J Nutr 2006; 136:2468–2474.

32. Perfield JW, Lock AL, Griinari JM, Saebø A, Delmonte P, Dwyer DA et al. trans- 9, cis-11 conjugated linoleic acid reduces milk fat synthesis in lactating dairy cows. J Dairy Sci 2007; 90(5):2211-8. http://dx.doi.org/10.3168/jds.2006-745

33. Murrieta CM, Hess BW, Scholljegerdes EJ, Engle TE, Hossner KL, Moss GE et al. Evaluation of milk somatic cells as a source of mRNA for study of lipogenesis in the mammary gland of lactating beef cows supplemented with dietary highlinoleate safflower seeds. J Anim Sci 2006; 84:2399–2405. http://dx.doi.org/10.2527/jas.2005-677

34. Vernia S. Estudio del factor de transcripción SREBP1 en estados de resistencia a insulina. [Tesis Doctoral]. Valencia: Departamento de Bioquímica y Biología Molecular. Consejo Superior de Investigaciones Científicas Instituto de Biomedicina de Valencia. Universidad de Valencia; 2007.

35. Feuermann Y, Mabjeesh SJ, NivSpector L, Levin D, Shamay A. Prolactin affects leptin action in the bovine mammary gland via the mammary fat pad. J Endocrinol 2006; 191(2):407-13. http://dx.doi.org/10.1677/joe.1.06913

36. Castro-Bola-os M, Herrera-Ramírez C, Lutz-Cruz G. Composición, caracterización y potencial aterogénico de aceites, grasas y otros derivados producidos o comercializados en Costa Rica. Acta Med Costarric 2005; 47(1).

37. Valenzuela A, Sanhueza J, Nieto S. El uso de lípidos estructurados en la nutrición: una tecnología que abre nuevas perspectivas en el desarrollo de productos innovadores. Rev chil nutr 2002; 29(2):106-115. http://dx.doi.org/10.4067/S0717-75182002000200005

38. Chardigny JM, Masson E, Sergiel JP, Darbois M, Loreau O, Noël JP et al. The position of rumenic acid on triacylglycerols alters its bioavailability in rats. J Nutr 2003; 133(12):4212-4.

39. Karupaiah T, Sundram K. Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: a review of their nutritional implications. Nutr Metab 2007; 4:16:1-17.

40. Christie WW, Clapperton JL. Structures of the triglycerides of cows' milk, fortified milks (including infant formulae), and human milk. Int J Dairy Tech 1982; 35:22–24. http://dx.doi.org/10.1111/j.1471-0307.1982.tb02259.x

Descargas

La descarga de datos todavía no está disponible.