Aplicaciones de la citometría de flujo en microbiología, veterinaria y agricultura

Contenido principal del artículo

Autores

José Laguado

Resumen

La citometría de flujo es un método automatizado, multiparamétrico y cuantitativo que analiza las señales dispersadas y fluorescentes producidas por una célula al pasar por un haz de luz. El potencial de los nuevos métodos de análisis en el laboratorio en el campo de la microbiología viene creciendo de manera enorme en los últimos años donde la citometría de flujo se ha consolidando como una herramienta rápida, sencilla, suficientemente sensible, económica, de fácil automatización para las crecientes necesidades de desarrollo de Colombia. La citometría permite obtener información sobre la fisiología, morfología, genética y diversidad de microorganismos, animales y plantas. Las variadas aplicaciones de la citometría en la microbiología de alimentos, la microbiología ambiental, la medicina veterinaria y la agricultura busca ahora complementar o reemplazar técnicas ya existentes adaptándonos a la continua evolución de las necesidades de los mercados globales de la ciencia y la economía.

Palabras clave:

Detalles del artículo

Referencias

1. Shapiro HM. Practical Flow Cytometry. New York. John Wiley & Sons Inc. 2003. 4th Edition.

2. Bouix M. and Leveau JY. The applications of flow cytometry in microbiology. Bull Soc Fr Microbiol 2001; 16:210–218.

3. Rollenhagen C, and Bumann D. Salmonella enterica Highly Expressed Genes Are Disease Specific. Infect Immun 2006; 74 (3): 1649-1660. http://dx.doi.org/10.1128/IAI.74.3.1649-1660.2006

4. Alvarez-Barrientos AM, Arroyo J, Cantón R, Nombela C, and SánchezPérez, M. Applications Of Flow Cytometry To Clinical Microbiology. Clin Microbiol Rev 2000;13:167–195. http://dx.doi.org/10.1128/CMR.13.2.167-195.2000

5. Mattanovich D, and Borth N. Applications of Cell Sorting in Biotechnology. Microbial Cell Factories 2006; 5:12-22 http://dx.doi.org/10.1186/1475-2859-5-12
http://dx.doi.org/10.1186/1475-2859-5-S1-S12
http://dx.doi.org/10.1186/1475-2859-5-S1-P12

6. Hartmann H, Stender H, Schäfer A, Autenrieth IB, and Kempf VA. Rapid Identification of Staphylococcus aureus in Blood Cultures by a Combination of Fluorescence In Situ Hybridization Using Peptide Nucleic Acid Probes and Flow Cytometry. J Clin Microbiol 2005;43 (9):4855-4857 http://dx.doi.org/10.1128/JCM.43.9.4855-4857.2005

7. Suller MT, and Lloyd D. Fluorescence Monitoring Of Antibiotic Induced Bacterial Damage Using Flow Cytometry. Cytometry 1999;35:235– 241. http://dx.doi.org/10.1002/(SICI)1097-0320(19990301)35:3<235::AID-CYTO6>3.0.CO;2-0

8. Pina-Vaz C, Costa-de-Oliveira S, Rodrigues AG, and Ingroff AE. Comparison of Two Probes for Testing Susceptibilities of Pathogenic Yeasts to Voriconazole, Itraconazole and Caspofungin by Flow Cytometry. J Clin Microbiol 2005;43(9):4674-4679.
http://dx.doi.org/10.1128/JCM.43.9.4674-4679.2005

9. Dixon BR, Bussey JM, Parrington LJ and Parenteau M. Detection of Cyclospora cayetanensis Oocysts in Human Fecal Specimens by Flow Cytometry. J Clin Microbiol 2005;43(5):2375-2379 http://dx.doi.org/10.1128/JCM.43.5.2375-2379.2005

10. Jiménez-Díaz MB, Rullas J, Mulet T, Fernández L, Bravo C, Gargallo-Viola D y Angulo-Barturen I. Improvement of Detection Specificity of Plasmodium-Infected Murine Erythrocytes by Flow Cytometry Using Autofluorescence and YOYO- 1. Cytometry Part A 2005; 67 A : 27-36

11. Moser DP, Gihring TM, Brockman FJ, Fredrickson JK, Balkwill DL, Dollhopf ME, et al. Desulfotomaculum and Methanobacterium spp Dominate a 4-to 5 Kilometer-Deep Fault. Appl Environ Microbiol 2005; 71(12):8773-8783 http://dx.doi.org/10.1128/AEM.71.12.8773-8783.2005

12. Brussaard, Corina PD. Optimization of Procedures for Counting Viruses by Flow Cytometry. Appl Environm Microbiol 2004;70(3):1506-1513 http://dx.doi.org/10.1128/AEM.70.3.1506-1513.2004

13. Brussard C, Marie D, and Bratbak G. Flow Cytometric Detection of Viruses. J Virol Meth 2000;85:175-182 http://dx.doi.org/10.1016/S0166-0934(99)00167-6

14. Herzenberg L, Tung J, Moore M, Herzenberg L, Parks D. Interpreting flow cytometry data: a guide for the perplexed. Nat Immunol 2006;7:681-5 http://dx.doi.org/10.1038/ni0706-681

15. Brehm-Stecher B and Johnson E. Single-Cell Microbiology: Tools, Technologies, and Applications. 2004. Microbiol Mol Biol Rev 2004;68(3):538–559 http://dx.doi.org/10.1128/MMBR.68.3.538-559.2004

16. Park H, Schumacher R, and Kilbane I. New method to characterize microbial diversity using flow cytometry. J Ind Microbiol Biotechnol 2005;32:94–102 http://dx.doi.org/10.1007/s10295-005-0208-3

17. Mou X. Moran M, Stepanauskas R, González J, and Hodson R. Flowcytometric cell sorting and subsequent molecular analyses for culture-independent identification of bacterioplankton involved in dimethylsulfoniopropionate transformations. Appl Environ Microbiol 2005;71:1405–1416. http://dx.doi.org/10.1128/AEM.71.3.1405-1416.2005

18. Givan AL. Principles of flow cytometry: an overview. Meth Cell Biol 2001;63:19-50 http://dx.doi.org/10.1016/S0091-679X(01)63006-1

19. Shapiro, HM. Microbial analysis at the single-cell level: tasks and techniques. J Microbiol Meth 2000;42:3–16. http://dx.doi.org/10.1016/S0167-7012(00)00167-6

20. Barer MR, and Harwood CR. Bacterial viability and culturability. Adv Microb Physiol 1999;41:93–137. http://dx.doi.org/10.1016/S0065-2911(08)60166-6

21. Haughland, R. P. Handbook of fluorescent probes and research chemicals. Eugene, OR. Molecular Probes, Inc. 2002. 9th Ed.

22. Vives-Rego J, Lebaron P, and Nebevon-Caron G. Current And Future Applications Of Flow Cytometry In Aquatic Microbiology. FEMS Microbiol Rev 2000;24:429–448. http://dx.doi.org/10.1111/j.1574-6976.2000.tb00549.x

23. Cirino F, Webley WC, West C, Croteau NL, Andrzejewski C, and Stuart ES. Detection of Chlamydia in the Peripheral Blood Cells of Normal Donors Using in vitro Culture, Immunofluorescence Microscopy and Flow Cytometry Techniques. BMC Infect Dis 2006;6:23-36. http://dx.doi.org/10.1186/1471-2334-6-23
http://dx.doi.org/10.1186/1471-2334-6-165

24. Abad FX, Pintó RM, and Bosch A. Flow Cytometry Detection of Infectious Rotaviruses in Environmental and Clinical Samples. Appl Environm Microbiol 1998;64(7):2392-2396.

25. Yitzhaki S, Barnea A, Keysary A, and Zahavy E. New Approach for Serological Testing for Leptospirosis by Using Detection of Leptospira Agglutination by Flow Cytometry Light Scatter Analysis. J Clin Microbiol 2004;42(4):1680-1685 http://dx.doi.org/10.1128/JCM.42.4.1680-1685.2004

26. McClelland R and Pinder A. Detection of Salmonella typhimurium in dairy products with Flow Cytometry and Monoclonal Antibodies. Appl Environm Microbiol 1994;60:4255-4262.

27. Gunasekera T, Attfield P and Veal D. A flow Cytometry Method for Rapid Detection and Enumeration of Total Bacteria in Milk. Appl Environ Microbiol 2000;66(3):1228-1232 http://dx.doi.org/10.1128/AEM.66.3.1228-1232.2000

28. Porsch-Özcürümez M, Kischel N, Priebe H, Splettstösser W, Finke E, and Grunow R. Comparison of Enzyme-Linked Immunosorbent Assay, Western Blotting, Microagglutination, Indirect Immunofluorescence Assay and Flow Cytometry for Serologial Diagnosis of Tularemia. Clin Diagn Lab Immunol 2004;11(6):1008-1015

29. Prigione V, Lingua G and Marchisio VF. Development and Use of Flow Cytometry for Detection of Airborne Fungi. Appl Environ Microbiol 2004;70(3):1360-1365 http://dx.doi.org/10.1128/AEM.70.3.1360-1365.2004

30. Budde B and Rasch M. A Comparative Study on the Use of Flow Cytometry and Colony forming Units for Assessment of the Antibacterial Effect of Bacteriocins. Int J Food Microbiol 2001;63(1-2):65-72

31. Gunasekera T, Veal D and Attfield PV. Potential For Broad Applications Of Flow Cytometry And Fluorescence Techniques In Microbiological And Somatic Cell Analyses Of Milk. Int J Food Microbiol 2003;85(3):269-79 http://dx.doi.org/10.1016/S0168-1605(02)00546-9

32. Bunthof CJ , and Abee T. Development of a Flow Cytometric Method To Analyze Subpopulations of Bacteria in Probiotic Products and Dairy Starters. Appl Environm Microbiol 2002;68(6):2934-2942. http://dx.doi.org/10.1128/AEM.68.6.2934-2942.2002

33. Kleinsteuber S, Riis V, Fetzer I, Harms H, and Müller S. Population Dynamics within a Microbial Consortium During Growth on Diesel Fuel in Saline Environments. Appl Environm Micrbiol 2006;72(5):3531-3542. http://dx.doi.org/10.1128/AEM.72.5.3531-3542.2006

34. Weiss, D. Application of Flow Cytometric Techniques to Veterinary Clinical Hematology. Vet Clin Pathol 2002;31:72-82. http://dx.doi.org/10.1111/j.1939-165X.2002.tb00284.x

35. Szczotka M, Kawiak J, and Winnicka A. Determination Of Lymphocyte Subsets And Pcna Activity In Sheep Experimentally Infected With Bovine Leukemia Virus (BLV). Bull Vet Inst Pulawy 2003;47:45-50.

36. Davis E, Wilkerson M and Rush B. Flow Cytometry: Clinical Applications In Equine Medicine. J Vet Intern Med. 2002;16(4):404-410. http://dx.doi.org/10.1111/j.1939-1676.2002.tb01257.x

37. Javed M, Frasca S, Rood D, Cecchini K, Gladd M, Geary S and Silbart L. Correlates of Immune Protection in Chickens Vaccinated with Mycoplasma gallisepticum Strain GT5 following Challenge with Pathogenic M. gallisepticum Strain Rlow. Infect Immun 2005; 73(9):5410–5419. http://dx.doi.org/10.1128/IAI.73.9.5410-5419.2005

38. Cassataro J, Velikovsky C, De la Barrera S, Estein S, Bruno L, Bowden R, Pasquevich K, Fossati C and Giambartolomei G. A DNA Vaccine Coding for the Brucella Outer Membrane Protein 31 Confers Protection against B. melitensis and B. ovis Infection by Eliciting a Specific Cytotoxic Response. Infect Immun 2005; 73(10):6537–6546. http://dx.doi.org/10.1128/IAI.73.10.6537-6546.2005

39. Buddle B, McCarthy A, Ryan T, Pollock J, Vordermeier H, Hewinson R, Andersen P and De Lisle G. Use of mycobacterial peptides and recombinant proteins for the diagnosis of bovine tuberculosis in skin test-positive cattle. Vet Rec 2003; 153:615–620. http://dx.doi.org/10.1136/vr.153.20.615

40. Christensen P, Stenvang J and Godfrey W. A Flow Cytometric Method For Rapid Determination Of Sperm Concentration And Viability In Mammalian And Avian Semen. J Androl 2004;25:255–264. http://dx.doi.org/10.1002/j.1939-4640.2004.tb02786.x

41. Dolezel J and Bartos J. Plant DNA Flow Cytometry and Estimation of Nuclear Genome Size. Ann Bot 2005;95:99–110. http://dx.doi.org/10.1093/aob/mci005

42. Doust A. Architectural Evolution and its Implications for Domestication in Grasses. Ann Bot 2007; 100 (5): 941-950 http://dx.doi.org/10.1093/aob/mcm040

43. Noirot M, Poncet V, Barre P, Hamon P, Hamon S and De Kochko A. Genome Size Variations in Diploid Affrican Coffea Species. Ann Bot 2003; 92:709-714. http://dx.doi.org/10.1093/aob/mcg183

44. Hendrix B and Mcd. Stewart J. Estimation of the Nuclear DNA Content of Gossypium Species. Ann Bot 2005; 95:789–797. http://dx.doi.org/10.1093/aob/mci078

45. Price H, Dillon S, Hodnett G, Rooney W, Ross L and Johnston J. Genome Evolution in the Genus Sorghum (Poaceae). Ann Bot 2005; 95:219–227. http://dx.doi.org/10.1093/aob/mci015

46. Pillary M, Ogundiwin E, Tenkouano A, and Dolezel J. Ploidy and Genome Composition of Musa Germplasm and the International Institute of Tropical Agriculture (IITA). Afri J Biotech 2006; 5(13):1224-1232.

47. Srisawat T, Kanchanapoom K, Pattanapanyasat K, Srikul S and Chuthammathat W. Flow Cytometric Analysis Of Oil Palm: A Preliminary Analysis For Cultivars And Genomic DNA Alteration. Songklanakarin J Sci Technol 2005;27(suppl 3):645-652.

48. Chan C and Kepler T. Computational Immunology: From Benchtop to Virtual Reality. Ann Acad Med Singapore 2007;36(2):123-127.

49. Bernas T, Grégori G, Asem E and Robinson J. Integrating Cytomics and Proteomics. Mol Cell Prot 200; 5:2- 13.

50. Wattanaphansak S, Gebhart C, Olin M, and Deen J. Measurement of the Viability of Lawsonia intracellularis. Can J Vet Res 2005; 69:265-271.

51. Trieschmann L, Navarrete A, Kaschig K, Torkler S, Maas E, Schätzl H, and Böhm G. Ultra-Sensitive Detection of Prion Protein Fibrils by Flow Cytometry in Blood from Cattle Affected with Bovine Spongiform Encephalopathy. BMC Biotech 2005;5:26-30. http://dx.doi.org/10.1186/1472-6750-5-26

Descargas

La descarga de datos todavía no está disponible.