Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Resistencia a antimicrobianos en E. coli y Salmonella spp. de terneros del sur de Chile

Antimicrobial resistance in E. coli and Salmonella spp. isolates from calves in southern Chile



Abrir | Descargar

Cómo citar
Hervé Claude, L. P., Valenzuela Held, B., Moroni Rodríguez, M., Paredes Herbach, E., & Navarrete Talloni, M. J. (2017). Resistencia a antimicrobianos en E. coli y Salmonella spp. de terneros del sur de Chile. Revista MVZ Córdoba, 22(3), 6191-6203. https://doi.org/10.21897/rmvz.1124

Dimensions
PlumX
Luis Pablo Hervé Claude
Bárbara Valenzuela Held
Manuel Moroni Rodríguez
Enrique Paredes Herbach
María José Navarrete Talloni

Objetivo: Describir los hallazgos de resistencia a antimicrobianos en aislados de Salmonella spp. y E. coli obtenidos de terneros de menos de 30 días de edad en el sur de Chile. Materiales y métodos: Se obtuvieron reportes de necropsia y microbiología de 107 terneros en el período comprendido entre 2002 y 2015. Adicionalmente se generó un Score de Resistencia a antimicrobianos para permitir la comparación entre aislados que fueron evaluados contra un set de distintos antimicrobianos. Resultados: No se observa una clara tendencia en la resistencia en el período en estudio, con similares niveles de resistencia observados para E. coli, E. coli β-hemolítica y Salmonella spp. Aproximadamente 50% de los aislados mostraron amplia sensibilidad a antimicrobianos, y entre 19 y 36% de los aislados demostraron potencial de resistencia extendida y pan resistencia respectivamente. Se encontraron múltiples patrones de resistencia, incluyendo 32 para E. coli, 17 para E. coli β-hemolítica y 10 para Salmonella spp. Conclusiones: En general, E. coli se mostró más sensible a ceftriaxona, E. coli β-hemolítica a Florfenicol y Salmonella spp. a gentamicina. En contraste, estos agentes fueron resistentes a amoxicilina, ampicilina y oxitetraciclina respectivamente. Este estudio es único en su aproximación y provee de información útil para médicos veterinarios y productores sobre los patrones de resistencia que amenazan la salud de los terneros. Estos resultados pueden ayudar a médicos veterinarios de campo a enfrentar y controlar efectivamente las diarreas en terneros. 


Visitas del artículo 1632 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Merle R, Hajek P, Käsbohrer A, Hegger-Gravenhorst C, Mollenhauer Y, Robanus M, et al. Monitoring of antibiotic consumption in livestock: A German feasibility study. Prev Vet Med 2012; 104(1-2):34–43. https://doi.org/10.1016/j.prevetmed.2011.10.013
  2. WHO. Antimicrobial resistance. Global Report on Surveillance. Geneva: World Health Organization; 2014. URL Available from: http://apps.who.int/iris/bitststrem665/112642/1/9789241564748_eng.pdf
  3. Acar JF, Moulin G. Integrating animal health surveillance and food safety: the issue of antimicrobial resistance. Rev Sci Tech 2013; 32(2):383–392. https://doi.org/10.20506/rst.32.2.2230
  4. Heuer OE, Hammerum AM, Collignon P, Wegener HC. Food Safety: Human Health Hazard from Antimicrobial-Resistant Enterococci in Animals and Food. Clin Infect Dis 2006; 43(7):911–916. https://doi.org/10.1086/507534
  5. WHO. Critically Important Antimicrobials for Human Medicine. 3rd Revision 2011. Geneva, Switzerland: World Health Organization; 2011. URL Available from: http://apps.who.int/iris/tstr/10665/77376/1/9789241504485_eng.pdf
  6. Zawack K, Li M, Booth JG, Love W, Lanzas C, Gröhn YT. Monitoring antimicrobial resistance in the food supply chain and its implications for FDA policy initiatives. Antimicrob Agents Chemother 2016 22;60(9):5302-5311.
  7. Ungemach FR, Müller-Bahrdt D, Abraham G. Guidelines for prudent use of antimicrobials and their implications on antibiotic usage in veterinary medicine. Int J Med Microbiol 2006; 296(41):33-38. https://doi.org/10.1016/j.ijmm.2006.01.059
  8. Fernández-Alarcón C, Singer RS, Johnson TJ. Comparative genomics of multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic Escherichia coli from multiple animal sources. PLoS One 2011; 6:e23415. https://doi.org/10.1371/journal.pone.0023415
  9. Lapierre L, San Martin B, Araya-Jordan C, Borie C. Comparison of integron-linked antibiotic resistance genes in strains of Salmonella spp. isolated from swine in Chile in 2005 and 2008. Can J Microbiol 2010; 56(6):515–521. https://doi.org/10.1139/W10-033
  10. San Martin B, Kruze J, Morales MA, Agüero H, León B, Espinoza S, et al. Resistencia bacteriana en cepas patógenas aisladas de mastitis en vacas lecheras de la V Región, Región Metropolitana y Xa Región, Chile. Arch Med Vet 2002; 34(2)1–13. https://doi.org/10.4067/S0301-732X2002000200008
  11. San Martin B, Kruze J, Morales MA, Agüero H, Iragüen D, Espinoza S, et al. Antimicrobial Resistance in Bacteria Isolated From Dairy Herds in Chile. Int J Appl Res 2003; 1(1):1–8.
  12. San Martín B, Bravo V, Borie C. Antimicrobial resistance monitoring in cattle in Chile using E. coli as the indicator bacteria. Arch Med Vet 2005; 37(2):117–123.
  13. Hanon J-B, Jaspers S, Butaye P, Wattiau P, Méroc E, Aerts M, et al. A trend analysis of antimicrobial resistance in commensal Escherichia coli from several livestock species in Belgium (2011–2014). Prev Vet Med 2015; 122(4):443–452. https://doi.org/10.1016/j.prevetmed.2015.09.001
  14. Hille K, Fischer J, Falgenhauer L, Sharp H, Brenner GM, Kadlec K, et al. On the occurence of extended-spectrum- and AmpC-beta-lactamase-producing Escherichia coli in livestock: results of selected European studies. Berl Munch Tierarztl Wochenschr 2016; 127(9-10):403–11.
  15. Umpiérrez A, Acquistapace S, Fernández S, Oliver M, Acu-a P, Reolón E, et al. Prevalence of Escherichia coli adhesion-related genes in neonatal calf diarrhea in Uruguay. J Infect Dev Ctries 2016; 10(5):472-477. https://doi.org/10.3855/jidc.7102
  16. Bager F. DANMAP: onitoring antimicrobial resistance in Denmark. Int J Antimicrob Agents 2000; 14(4):271-4 https://doi.org/10.1016/S0924-8579(00)00135-7
  17. Hart CA, Kariuki S. Antimicrobial resistance in developing countries. BMJ 1998; 317(7159):647–650. https://doi.org/10.1136/bmj.317.7159.647
  18. CLSI. Performance standards for antimicrobial susceptibility testing. CLSI document M100-S24. Wayne, PA: Clinical and Laboratory Standards Institute; 2014.
  19. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18(3):268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
  20. Checkley SL, Campbell JR, Chirino-Trejo M, Janzen ED, McKinnon JJ. Antimicrobial resistance in generic fecal Escherichia coil obtained from beef cattle on arrival at the feedlot and prior to slaughter, and associations with volume of total individual cattle antimicrobial treatments in one western Canadian feedlot. Can J Vet Res 2008; 72(2):101–108.
  21. Cummings KJ, Divers TJ, McDonough PL, Warnick LD. Fecal shedding of Salmonella spp among cattle admitted to a veterinary medical teaching hospital. J Am Vet Med Assoc 2009; 234(12):1578–1585. https://doi.org/10.2460/javma.234.12.1578
  22. Mirzaagha P, Louie M, Sharma R, Yanke LJ, Topp E, McAllister TA. Distribution and characterization of ampicillin- and tetracycline-resistant Escherichia coli from feedlot cattle fed subtherapeutic antimicrobials. BMC Microbiol 2011;11:78. https://doi.org/10.1186/1471-2180-11-78
  23. Barlow RS, McMillan KE, Duffy LL, Fegan N, Jordan D, Mellor GE. Prevalence and Antimicrobial Resistance of Salmonella and Escherichia coli from Australian Cattle Populations at Slaughter. J Food Prot 2015; 78(5):912–920. https://doi.org/10.4315/0362-028X.JFP-14-476
  24. Berge ACB, Moore DA, Sischo WM. Field trial evaluating the influence of prophylactic and therapeutic antimicrobial administration on antimicrobial resistance of fecal Escherichia coli in dairy calves. Appl Environ Microbiol 2006; 72(6):3872-3878. https://doi.org/10.1128/AEM.02239-05
  25. Pereira R V, Siler JD, Ng JC, Davis MA, Warnick LD. Effect of preweaned dairy calf housing system on antimicrobial resistance in commensal Escherichia coli. J Dairy Sci 2014; 97(12):7633-7643. https://doi.org/10.3168/jds.2014-8521
  26. Gow SP, Waldner CL, Harel J, Boerlin P. Associations between antimicrobial resistance genes in fecal generic Escherichia coli isolates from cow-calf herds in western Canada. Appl Environ Microbiol 2008; 74(12):3658–3666. https://doi.org/10.1128/AEM.02505-07
  27. Hoyle DV, Shaw DJ, Knight HI, Davison C, Pearce M, Low JC, et al. Age-related decline in carriage of ampicillin-resistant Escherichia coli in young calves. Appl Environ Microbiol 2004; 70(11):6927–6930. https://doi.org/10.1128/AEM.70.11.6927-6930.2004
  28. Dantas G, Sommer MOA. Context matters - the complex interplay between resistome genotypes and resistance phenotypes. Curr Opin Microbiol 2012; 15(5):577–582. https://doi.org/10.1016/j.mib.2012.07.004
  29. Knapp CW, Dolfing J, Ehlert PAI, Graham DW. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 2010; 44(2):580–587. https://doi.org/10.1021/es901221x
  30. Gow SP, Waldner CL, Rajic A, McFall ME, Reid-Smith R. Prevalence of antimicrobial resistance in fecal generic Escherichia coli isolated in western Canadian cow-calf herds. Part I--beef calves. Can J Vet Res 2008; 72(2):82–90.

Sistema OJS 3.4.0.3 - Metabiblioteca |