Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Ambiente receptivo uterino: control materno, control embrionario, muerte embrionaria

Ambiente receptivo uterino: control materno, control embrionario, muerte embrionaria



Abrir | Descargar

Cómo citar
Gonella, Ángela, Grajales, H., & Hernández, A. (2010). Ambiente receptivo uterino: control materno, control embrionario, muerte embrionaria. Revista MVZ Córdoba, 15(1). https://doi.org/10.21897/rmvz.335

Dimensions
PlumX
Ángela Gonella
Henry Grajales
Aureliano Hernández

El ambiente receptivo en el útero, o ambiente embriotrófico, se define como la capacidad del organismo materno para hospedar el conceptus exitosamente. La receptividad uterina depende de la correcta sincronía del eje conceptus - cuerpo lúteo - endometrio y está controlada por dos mecanismos. El primero depende de la madre y se establece a través de las relaciones entre los estrógenos (E2) y la Progesterona (P4). El segundo es mediado por el trofoblasto que secreta interferón Tau (INFt). Los estrógenos se sintetizan en las células foliculares y determinan los cambios fisicoquímicos, morfológicos y del comportamiento expresadas por la hembra durante el celo. La P4 es sintetizada por el cuerpo lúteo (CL), y promueve, entre otros, cambios a nivel endometrial para la manutención de la gestación. Cuando la fertilización y desarrollo embrionario son exitosos, el INFt ejerce su efecto luteotrópico entre los días 15 y 19 de la gestación, desencadenando el proceso de reconocimiento materno para evitar la regresión luteal y asegurar la sobrevivencia del embrión. Además, el INFt estimula al organismo materno para producir un microambiente que le provea al embrión condiciones nutricionales, inmunológicas y fisiológicas óptimas para su desarrollo. La presente revisión pretende contextualizar cuales son los cambios que sufre el endometrio para proveer las condiciones necesarias permitiendo que el embrión se desarrolle correctamente y se establezca una gestación.

Visitas del artículo 1800 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Díaz FH, Hernández A, Gil A. Morfología endometrial y niveles de P4 en el tejido uterino durante el ciclo estral de vacas cebú. Rev Med Vet Zoot 1986; 39: 15-27.
  2. Callejas, S. Fisiología del Ciclo Estral Bovino. En: Palma G, editor. Biotecnología de la reproducción. Buenos Aires (Argentina): Instituto Nacional de Tecnología Agropecuaria INTA; 2001.
  3. Peiris ID, Grewal TS, Jeacock MK, Savva D, Shepherd DAL. Effect of a novel recombinant bovine interferon and trophoblast secretory products on protein metabolism by endometrial explants from cattle and sheep. Res Vet Sci 1998; 64:79-83. http://dx.doi.org/10.1016/S0034-5288(98)90120-5
  4. Wang B, Goff A. Interferon-ô stimulates secretion of macrophage migration inhibitory factor from bovine endometrial epithelial cell. Biol Reprod 2003; 69: 1690-1696. http://dx.doi.org/10.1095/biolreprod.102.012559
  5. Spencer TE, Johnson GA, Burghardt RC, Bazer FW. Progesterone and placental hormone actions on the uterus: Insights from Domestic Animals. Biol Reprod 2004; 71: 2-10. http://dx.doi.org/10.1095/biolreprod.103.024133
  6. Hansen PJ. Embryonic mortality in cattle from the embryos perspective. J Anim Sci 2002. 80 Suppl: 33-44.
  7. Roberts RM, Xie S, Mathialagan N. Maternal recognition of pregnancy. Biol Reprod 1996; 54: 294-302. http://dx.doi.org/10.1095/biolreprod54.2.294
  8. Rabbani M, Rogers PAW. Role of vascular endothelial growth factor in endometrial vascular events before implantation in rats. Reproduction 2001; 122: 85-90. http://dx.doi.org/10.1530/rep.0.1220085
  9. Ding YQ, Zhu LJ, Bagchi MK, Bagchi IC. Progesterone stimulates calcitonine gene expression in the uterus during implantation. Endocrinology 1994; 135: 2265-2274. http://dx.doi.org/10.1210/en.135.5.2265
  10. http://dx.doi.org/10.1210/endo.135.5.7956949
  11. Kayser JPR, Kim JG, Cerny RL, Vallet J. Global characterization of porcine intrauterine proteins during early pregnancy. Reproduction 2006; 132: 379-388. http://dx.doi.org/10.1530/rep.1.00882
  12. Mitko K, Ulbrich SE, Wenigerkind H, Sinowatz F, Blum H, et. al. Dynamic changes in messenger RNA profiles of bovine endometrium during the oestrus cicle. Reproduction 2008; 135: 225-240. http://dx.doi.org/10.1530/REP-07-0415
  13. Hernández, A. Lecturas sobre reproducción bovina. Tomo III. Aspectos morfofisiológicos de la implantación. Bogotá, Colombia: Universidad nacional de Colombia. Facultad de medicina veterinaria y zootecnia; 1995.
  14. Lee RSF, Wheeler TT, Peterson AJ. Large format, two dimensional poliacrylamide gel electrophoresis of ovine periimplantation uterine luminal fluid proteins: identification of aldose reductase, cytoplasmic actin, and transferring as conceptus-synthesized proteins. Biol Reprod 1998; 59: 743-752. http://dx.doi.org/10.1095/biolreprod59.4.743
  15. Abdi-Dezfuli F, Poyser NL. Hormonal controls of proteins synthesized and secreted by guinea-pig endometrium. J Reprod Fertil 1993; 97: 179-188. http://dx.doi.org/10.1530/jrf.0.0970179
  16. Lee K, Jeong J, Tsai M, Tsai S, Lydon JP, et. al. Molecular mechanisms involved in progesterone receptor regulation of uterine function. J Steroid Biochem Mol Biol 2006; 102, 41-50.
  17. Cullinan-Bove K, Koos R. Vascular endothelial growth factor/ vascular permeability factor expression in the rat uterus: rapid stimulation by estrogen correlates with estrogen-induced increases in uterine capillary permeability and growth. Endocrinology 1993; 133: 829-837. http://dx.doi.org/10.1210/en.133.2.829 http://dx.doi.org/10.1210/endo.133.2.8344219
  18. Wang CK, Robinson RS, Flint AP, Mann GE. Quantitative analysis of changes in endometrial gland morphology during bovine oestrus cycle and their association whit progesterone levels. Reproduction 2007; 134: 365-371. http://dx.doi.org/10.1530/REP-06-0133
  19. Niswender GD, Juengel JL, McGuire WJ, Belfiore CJ, Wiltbank MC. Luteal function: the estrus cycle and early pregnancy. Biol Reprod 1994; 50: 239-47. http://dx.doi.org/10.1095/biolreprod50.2.239
  20. Olivera M. Vías implicadas en la luteólisis bovina. Rev Col Cienc Pec 2007; 20: 387-393.
  21. Kombe A, Sirois J, Goff AK. Prolonged progesterone treatment of endometrial epithelial cells modifies the effect of E2 on their sensitivity to oxytocin. Steroids 2003; 68: 651-658. http://dx.doi.org/10.1016/S0039-128X(03)00094-1
  22. Lessey BA, Yeh Y, Castelbaum AJ, Fritz MA. Endometrial progesterone receptors and markers of uterine receptivity in the window of implantation. Fertil Steril 1996; 65: 477-83. http://dx.doi.org/10.1016/S0015-0282(16)58140-0
  23. Thatcher WW, Meyer MD, Danet-Desnoyers G. Maternal Recognition of pregnancy. J Reprod Fertil 1995; 49: 15-28.
  24. Ott TL, Zhou Y, Mirando MA, Stevens C, Harney JP, et. al. Changes in progesterone and estrogen receptor mRNA and protein during maternal recognition of pregnancy and luteolysis in ewes. J Mol Endocrinol 1993; 10: 171-183. http://dx.doi.org/10.1677/jme.0.0100171
  25. Spencer TE, Becker WC, George P, Mirando M, Olge TF, et. al. Ovine interferon-ô inhibits estrogen receptor up-regulation and estrogen-induced luteolysis in cyclic ewes. Endocrinology 1995; 136: 4932-4944. http://dx.doi.org/10.1210/en.136.11.4932 http://dx.doi.org/10.1210/endo.136.11.7588227
  26. Gazeloglu A, Subramaniam P, Michel F, Thatcher WW. Interferon-t induces degradation of prostaglandin H synthase-2 messenger RNA in bovine endometrial cells through a transcription-dependent mechanism. Biol Reprod 2004; 71: 170-176. http://dx.doi.org/10.1095/biolreprod.103.025411
  27. Vallee M, Beaudry D, Roberge C, Matte JJ, Blouin R. Isolation and differential expressed genes in conseptuses and endometrial tissue of sows in early gestation. Biol Reprod 2003; 69: 1697-706. http://dx.doi.org/10.1095/biolreprod.103.019307
  28. Spencer TE, Sandra O, Wolf E. Genes involved in conceptus-endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches. Reproduction 2008; 135: 165-179. http://dx.doi.org/10.1530/REP-07-0327
  29. Huddleston H, Schust DJ. Immune interactions at the maternal-fetal interface: a focus on antigen presentation. Am J Reprod Immunol 2004; 51: 283-289. http://dx.doi.org/10.1111/j.1600-0897.2004.00157.x
  30. Uma-a JA, Hernández A, Densidad capilar en el útero bovino durante la implantación. Rev ACOVEZ 1994; 19: 10-12.
  31. Wang B, Xiao C, Goff AK. Progesterone-Modulated induction of apoptosis by Interferon-Tau in cultured epithelial cells of bovine endometrium. Biol Reprod 2003; 68: 673-679. http://dx.doi.org/10.1095/biolreprod.102.006924
  32. Binelli M, Subramaniam P, Diaz T, Johnson G, Hansen TR, et. al. Bovine interferon-t stimulates the janus kinase-signal transducer and activator of transcription pathway in bovine endometrial epithelial cells. Biol Reprod 2001; 64: 654-665. http://dx.doi.org/10.1095/biolreprod64.2.654
  33. Song G, Spencer TE, Bazer FW. Progesterone and interferon t regulate cystatin C in the endometrium. Endocrinology 2006; 147: 3478-3483. http://dx.doi.org/10.1210/en.2006-0122
  34. Hernández A. Métodos de evaluación de la mortalidad embrionaria. Rev Vet al día 1995; 1: 28-30.
  35. Thatcher WW, Guzeloglu A, Mattos R, Binelli M, Hansen TR. et. al. Uterine-Conceptus interactions and reproductive failure in cattle. Theriogenology 2001; 56: 1435-1450. http://dx.doi.org/10.1016/S0093-691X(01)00645-8
  36. Ohtani S, Okuda K. Histological observation of the endometrium in repeat breeder cows J Vet Med Sci 1995; 57: 283-286.

Sistema OJS 3.4.0.3 - Metabiblioteca |