Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Efecto de la suplementación con alanina y glicina sobre los clivajes iniciales de embiones bovinos producidos in vitro

Efecto de la suplementación con alanina y glicina sobre los clivajes iniciales de embiones bovinos producidos in vitro



Abrir | Descargar

Cómo citar
Arias L, C., Ruiz C, T., Olivera A, M., & Tarazona M, A. (2007). Efecto de la suplementación con alanina y glicina sobre los clivajes iniciales de embiones bovinos producidos in vitro. Revista MVZ Córdoba, 12(2). https://doi.org/10.21897/rmvz.422

Dimensions
PlumX
Catalina Arias L
Tatiana Ruiz C
Martha Olivera A
Ariel Tarazona M

Objetivo. Determinar el efecto de la suplementación con alanina y glicina en el medio de cultivo sobre el porcentaje de clivaje de embriones bovinos, bajo condiciones de alta (20%) y baja (7%) tensión de oxígeno. Materiales y métodos. Los embriones fueron producidos a partir de oocitos madurados in vitro en M-199 suplementado con hormonas e inseminados con semen criopreservado; los cigotos fueron cultivados en medio CR1-AA. Al momento del cultivo se adicionaron alanina y glicina (5 mM y 10mM final respectivamente). Se usaron 4 tratamientos (T1: aminoácidos y baja tensión de oxígeno; T2: aminoácidos y alta tensión de oxígeno; T3: no aminoácidos y baja tensión de oxígeno; T4: no aminoácidos y alta tensión de oxígeno). El clivaje fue evaluado a las 48 hpi (horas post inseminación) evaluándose el número de embriones clivados sobre el total de embriones cultivados y el estadío de desarrollo (no clivados, 2, 4, 5-8 células). Se usó el programa estadístico STATISTICA (versión 5.0). Resultados. El porcentaje de embriones de 5-8 células en el tratamiento 1 respecto a los otros 3 tratamientos fue mayor (p= 0.007). Conclusiones. Los aminoácidos alanina y glicina son fundamentales para los clivajes iniciales y en bajas tensiones de oxígeno se aumenta la proporción de embriones competentes hasta las 48hpi.

Visitas del artículo 777 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Serrano C, Olivera-Angel M. Detenimiento en el ciclo celular de embriones bovinos producidos in vitro. Taurus 2003; 5 (20): 20-35.
  2. Thompson JG, McNaughton C, Gasparini B, McGowan LT, Tervit HR. Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J Reprod Fertil 2000; 118: 47-55. http://dx.doi.org/10.1530/reprod/118.1.47
  3. http://dx.doi.org/10.1530/jrf.0.1180047
  4. Takahashi M, Nagai T, Okamura N, Takahashi H, Okano A. Promoting Effect of ß-Mercaptoethanol on In Vitro Development under Oxidative Stress and Cystine Uptake of Bovine Embryos. Biol Reprod 2002; 6: 562– 567. http://dx.doi.org/10.1095/biolreprod66.3.562
  5. Edwards JL, King WA, Kawarsky SJ, Ealy PD. Responsiveness of early embryos to environmental insults. Teriogenology 2001; 55: 209-223. http://dx.doi.org/10.1016/S0093-691X(00)00455-6
  6. Brookes P. Mitochondrial H leak and ROS Generation: an odd couple. Free Radic Biol Med 2005; 38 (1): 12-23. http://dx.doi.org/10.1016/j.freeradbiomed.2004.10.016
  7. Fernández V Daniel, citado por Laguna P. José y Pi-a G. Enrique. Bioquímica de Laguna. 5 ed. México DF. Editorial El Manual Moderno. 2002. Cáp 9.
  8. Velez-Pardo C, Tarazona Morales A, Jimenez Del Rio M, Olivera-Angel M. Endogenously generated hydrogen peroxide induces apoptosis via mitochondrial damage independent of NF-kB and p53 activation in bovine embryos. Theriogenology 2007; 67: 1285–1296. http://dx.doi.org/10.1016/j.theriogenology.2007.01.018
  9. Miller JGO, Schultz GA. Amino acid content of preimplantation rabbit embryos and fluids of the reproductive tract. Biol Reprod 1987; 36: 125-129. http://dx.doi.org/10.1095/biolreprod36.1.125
  10. Boland M, Lonergan P, O' Callaghan D. Effect of nutrition on endocrine parameters, ovarian physiology, and oocyte and embryo development. Theriogenology 2001; 55: 1323-1340. http://dx.doi.org/10.1016/S0093-691X(01)00485-X
  11. Eun- Song L, Yutaka F. Synergistic Effec of Alanine and Glycine on Bovine Embryos Cultured in Chemically Defined Medium and amino Acid Uptake by in vitroproduced Bovine Morulae and Blastocysts. Biol Reprod 1996; 55: 1383-1389. http://dx.doi.org/10.1095/biolreprod55.6.1383
  12. Duranthon V, Renard JP. The developmental competence of mammalian oocytes: a convenient but biologically fuzzy concept. Theriogenology 2001; 55 (6): 1277- 1289. http://dx.doi.org/10.1016/S0093-691X(01)00482-4
  13. Tarazona AM, Rodriguez JI, Restrepo LF, Olivera-Angel M. Mitochondrial activity, distribution and segregation in bovine oocytes and in embryos produced in vitro. Reprod Domest Anim 2005; 40: 1-7.
  14. Leung KC, Adashi E. The ovary. Second edition. San Diego, California, Elsevier Academic Press. 2004. Chapter 7: 113-129.
  15. Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Goncalves PB, Wolf E. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod 2001; 64(3): 904-909. http://dx.doi.org/10.1095/biolreprod64.3.904
  16. Fukui Y. Effect of follicle cells on the acrosome reaction, fertilization, and developmental competence of bovine oocytes matured in vitro. Mol Reprod Dev 1990; 26(1) 40-46.
  17. Parrish JJ, Krogenaes IA, SuskoParrish JL. Effect of bovine sperm separation by either swim-up or percoll method on success of in vitro fertilization and early embryonic development. Theriogenology 1995; 44: 859-869. http://dx.doi.org/10.1016/0093-691X(95)00271-9
  18. Rosenkrans Jr CF, Zeng GQ, MCNamara GT, Schoff PK, First NL. Development of bovine embryos in vitro as affected by energy substrates. Biol Reprod 1993; 49:459–62. http://dx.doi.org/10.1095/biolreprod49.3.459
  19. Gardner DK. Development of serumfree culture systems for the ruminant embryo and subsequent assessment of embryo viability. J Reprod Fertil 1999; suppl 54: 461-475.
  20. Kerri MD, Baltz JM. Organic Osmolytes and Embryos: Substrates of the Gly and ß Transport Systems Protect Mouse Zigotes against the effects of raised Osmolarity. Biol Reprod 1997; 56: 1550-1558. http://dx.doi.org/10.1095/biolreprod56.6.1550
  21. Legge M, Sellens MH. Free radical scavengers ameliorate the 2 cell Block in mouse embryo culture. Human Reprod 1991; 6: 867- 87.
  22. Cummins J. The role of mitochondria in the establishment of oocyte functional competence. Eur J Obstet Gynecol Reprod Biol 2004; 115: (Suppl 1) 23-29.
  23. Halliwell B. Superoxide-dependet formation of hydroxy radicals in presence of iron chelaters. FEBS Lett 1987; 92: 321-326. http://dx.doi.org/10.1016/0014-5793(78)80779-0
  24. Moore K, Bondioli K. Glycine and Alanine Supplementation of Culture Medium Enhances Development of in vitro Matured and Fertilized Cattle Embryos. Biol Reprod 1993; 48: 833- 840. http://dx.doi.org/10.1095/biolreprod48.4.833

Sistema OJS 3.4.0.3 - Metabiblioteca |