Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Análisis estructural de filetes sajados de híbrido de cachama Piaractus braquypomus x Colossoma macropomum utilizando bacteriocinas producidas por Lactobacillus plantarum LPBM10 empacado al vacío

Análisis estructural de filetes sajados de híbrido de cachama Piaractus braquypomus x Colossoma macropomum utilizando bacteriocinas producidas por Lactobacillus plantarum LPBM10 empacado al vacío



Abrir | Descargar

Cómo citar
Suárez M., H., Pardo C., S., & Cortes R., M. (2008). Análisis estructural de filetes sajados de híbrido de cachama Piaractus braquypomus x Colossoma macropomum utilizando bacteriocinas producidas por Lactobacillus plantarum LPBM10 empacado al vacío. Revista MVZ Córdoba, 13(2). https://doi.org/10.21897/rmvz.390

Dimensions
PlumX
Héctor Suárez M.
Sandra Pardo C.
Misael Cortes R.

Héctor Suárez M.

Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias, Departamento de Ingeniería Agrícola y de Alimentos, Medellín, Colombia

Sandra Pardo C.

Universidad Nacional de Colombia, Departamento de Producción Animal, Medellín, Colombia

Misael Cortes R.

Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias, Departamento de Ingeniería Agrícola y de Alimentos, Medellín, Colombia

Objetivo. Determinar los cambios microestructurales, texturales y sensoriales de filetes sajados de híbrido de cachama. Materiales y métodos. Filetes empacados al vacío y sometidos a refrigeración durante 30 días a 3ºC fueron analizados bajo tres tratamientos de preservación; extracto crudo de bacteriocinas, acido láctico y control por medio de microscopia de luz. Resultados. El espacio entre las fibras musculares fue aumentando gradualmente y el arreglo arquitectónico fue alterado a lo largo del periodo de almacenamiento en los tres tratamientos. La menor alteración en la degradación del tejido conectivo y el menor incremento del espacio entre las fibras musculares fue observado en el tratamiento con extracto crudo de bacteriocinas. El análisis instrumental de textura mostró pérdida de firmeza de los filetes sin diferencia estadística entre los tratamientos. El análisis sensorial demostró que el tratamiento de sajado es efectivo para disminuir el efecto negativo de las espinas intramusculares. Los mejores puntajes fueron asignados para los filetes sajados tratados con extracto crudo de bacteriocinas. Conclusiones. Los filetes fueron afectados durante el periodo de almacenamiento, incidiendo en la textura de la carne. El efecto del sajado es un procedimiento que permite utilizar filetes sin percibir el problema de las espinas intramusculares. La utilización del extracto crudo de bacteriocinas prolongó la vida útil de los filetes.

Visitas del artículo 888 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Hernández A. Estado actual del cultivo de Colossoma e Piaractus en Brasil, Colombia, Panamá, Perú y Venezuela. En: Memorias del VIII congreso Latinoamericano de Acuicultura y V Seminario Nacional de Acuicultura, Acuicultura y Desarrollo Sostenible. Santafé de Bogotá. 1994; 9-23.
  2. Kiessling A, Ruohonen K, Bjørnevik M. Muscle fibre growth and quality in fish Arch Tierz 2006; 49: 137-146.
  3. Ashie N, Smith P, Simpson K. Spoilage and shelf life extension of fresh fish and shell fish. Food Sci Technol Res 1996; 36: 87-121.
  4. Bremner A. Gaping in fish flesh. In Sato K, Sakaguchi M, Bremner A. (eds). Extracellular matrix of fish and shellfish. Trivandrum, India: Research Signpost; 1999.
  5. Sato K, Yoshinaka R, Itoh Y, Sato M. Molecular species of collagen in the intramuscular connective tissue in fish. Comp Biochem Physiol 1989; 92(b): 87-91.
  6. Ando M, Nishiyabu A, Tsukamasa Y, Makinodan Y. Postmortem softening of fish muscle during chilled storage as affected by bleeding. J Food Sci 1999; 64(3): 423-428.
  7. http://dx.doi.org/10.1111/j.1365-2621.1999.tb15056.x
  8. Ando M. Softening Mechanism of Fish Meat. Suisangaku Series. Tokyo, Japan:Kouseisha Kouseikaku; 1997.
  9. Suarez H, de Francisco A, Beirão H, Pardo S, Cortés M. Pérdida de textura post mortem de la carne de pescado durante el almacenamiento en frío. Acta Biol Colomb 2007; 12(1): 3–8.
  10. Sa to K , Oha shi C , Oh t suki K , Kawabata M. Type V collagen in trout (Salmo gairdneri) muscle and its solubility change during chilled storage of muscle. J Agric Food Chem 1991; 39:1221–1225.
  11. Ando M, Toyohara H, Sakaguchi M. Post-mortem tenderization of rainbow trout muscle caused by the disintegration of collagen fibres in the pericellular connective tissue. Nipp Suis Gakkaishi 1992; 58 (3): 567–570. http://dx.doi.org/10.2331/suisan.58.567
  12. Suárez H, Pardo S, Beirão H, de Francisco A, Okada L. Efecto de la súper refrigeración sobre la textura de la carne de matrinxã (Brycon cephalus). Rev Colomb Cienc Pecu 2006; 19(2). 221-227.
  13. Ando M, Toyohara H, Sakaguchi M. Post-mortem tenderization of fish muscle due to weakening of pericellular connective tissue. Nipp Suis Gakkaishi 1993; 59:1073-1076. http://dx.doi.org/10.2331/suisan.59.1073
  14. Ando M , Yoshimo to Y, Inabu K , Nakagawa T, Makinodan Y. Postmortem change of three-dimensional structure of collagen fibrillar network in fish muscle pericellular connective tissue corresponding to post-mortem tenderization. Fish Sci 1995; 61: 327-330.
  15. Sato K, Ando M, Kubota S, Origasa K, Kawase H.; Toyohara H, Sakaguchi M, Nakagawa T, Makinodan Y, Ohtsuki K, Kawabata M. Involvement of Type V Collagen in Softening of Fish Muscle during Short-Term Chilled Storage. J Agri Food Chem 1997;45: 343-348. http://dx.doi.org/10.1021/jf9606619
  16. Sigurgisladottir S, Sigurdardottir S, Torrissen O, Vallet L, Hafsteinsson H. Effects of different salting and smoking processes on the microstructure, the texture and yield of Atlantic salmon (Salmo salar) fillets. Food Res Intern 2000; 33: 847-855. http://dx.doi.org/10.1016/S0963-9969(00)00104-6 http://dx.doi.org/10.1016/S0963-9969(00)00105-8
  17. Amerine A, Pongborn H, Roescler B. Principles of sensory evaluation of food. New York: Academic Press; 1965.
  18. Haard F. Control of chemical composition and food quality attributes of cultured fish. Food Res Intern 1992; 25: 1-19. http://dx.doi.org/10.1016/0963-9969(92)90126-P
  19. Hatae K, Yoshimatsu F, Matsumoto J. Role of muscle fibers in contributing firmness of cooked fish. J Food Sci 1990; 55: 693-696. http://dx.doi.org/10.1111/j.1365-2621.1990.tb05208.x
  20. Hurling R, Rodell B, Hunt D. Fiber diameter and fish texture. J Texture Stud 1996; 27: 679-685. http://dx.doi.org/10.1111/j.1745-4603.1996.tb01001.x
  21. Johnston A, Alderson R, Sandham C, Dingwall A, Mitchell D, Selkirk C, Nickell D, Baker R, Robertson B, Whyte D, Springate J. Muscle fibre density in relation to the colour and texture of smoked Atlantic salmon (Salmo salar L.). Aquaculture 2000; 189: 335-349. http://dx.doi.org/10.1016/S0044-8486(00)00373-2
  22. Johnston I, Manthri S, Bickerdike R, Dingwall R, Campbell P, Nickell D, Alderson R. Growth performance, muscle structure and flesh quality in out-of-season Atlantic (salmo salar) smolt reared under two different photoperiod regimes. Aquaculture 2004; 237: 281-300. http://dx.doi.org/10.1016/j.aquaculture.2004.04.026
  23. Bugeon J, Jefevre F, Fauconneau B. Fillet texture and muscle structure in brown trout (Salmo trutta ) subjected to longterm exercise. Aquaculture Res 2003; 34: 1287-1295. http://dx.doi.org/10.1046/j.1365-2109.2003.00938.x
  24. Bjørnevik M, Karlsen Ø, Johnston A, Kiessling A. Effect of sustained exercise on white muscle structure and flesh quality in farmed cod. Aquaculture 2003; 34: 55-64. http://dx.doi.org/10.1046/j.1365-2109.2003.00794.x
  25. Espe M, Ruohonen K, Bjørnevik M, Frøyland l, Nortvedt R, Kiessling A. Interactions between ice storage time, collagen composition, gaping and textural properties in farmed salmon muscle harvested at different times of the year. Aquaculture 2004; 204: 489-504. http://dx.doi.org/10.1016/j.aquaculture.2004.04.023
  26. Masniyom P, Benjakul S, Visessanguan W. Collagen changes in refrigerated sea bass muscle treated with pyrophosphate and stored in modified atmosphere packaging. Eur Food Res Technol 2005; 220: 322-325. http://dx.doi.org/10.1007/s00217-004-1093-0
  27. Stiles E, Hastings W. Bacteriocin production by lactic acid bacteria: potential for use in meat preservation. Food Sci Technol Res 1991; 2: 247-251. http://dx.doi.org/10.1016/0924-2244(91)90706-O
  28. Bjørnevik M, Espe M, Beattie C, Nortvedt R, Kiessling A. Temporal variation in muscle fibre area, gaping, texture, colour and collagen in triploid and diploid Atlantic salmon (Salmo salar L.). J Sci Food Agric 2004; 84: 530-540. http://dx.doi.org/10.1002/jsfa.1656
  29. Mesa M, Botero A. Cachama blanca (Piaractus brachypomus), una especie potencial para el mejoramiento genético. Rev Colomb Cienc Pecu 2007; 20 (1): 79-86.
  30. Ayala D, López O, Blanco A, García A, Abellán E, Ramírez G, Gil F. Structural and Ultrastructural Changes on Muscle Tissue of Sea Bass, Dicentrarchus labrax L. After Cooking and Freezing. Aquaculture, 2005; 250 (1-2): 215-231.
  31. Love M. Biochemical dynamics and the quality of fresh and frozen fish, In: Fish Processing Technology, G. M. HALL. (Ed).Glasgow (UK): Blache Academic G. Prossional; 1992.
  32. Fenema R. Química de los alimentos. Zaragoza, Espa-a: Ed. Acribia S.A.1993
  33. Mizuta S, Fujisawa S, Nishimoto M, Yoshinaka R. Biochemical and immunochemical detection of types I and V collagens in tiger puffer Takifugu rubripes. Food Chem 2005; 89 (1): 373-377. http://dx.doi.org/10.1016/j.foodchem.2004.02.043
  34. Truelstrup L, Gill T, Drewes S, Huss H. Importance of autolysis and microbiological activity on quality of cold-smoked salmon. Food Res Intern 1996; 29: 181–188. http://dx.doi.org/10.1016/0963-9969(96)00003-8
  35. Brillet A, Pilet M, Prevost H, Cardinal M, Leroi F. Effect of inoculation of Carnobacterium divergens V41, a biopreservative strain against Listeria monocytogenes risk, on the microbiological, chemical and sensory quality of cold-smoked salmon. Int J Food Microbiol 2005; 104: 309-324. http://dx.doi.org/10.1016/j.ijfoodmicro.2005.03.012

Sistema OJS 3.4.0.3 - Metabiblioteca |