Caracterización morfoagronómica de la colección de germoplasma de ají dulce (Capsicum spp.) del Caribe colombiano

Morphoagronomic characterization of t sweet pepper (Capsicum spp.) germplasm collection in the colombian Caribbean

Ender M. Correa-Álvarez^{1*©}; Rommel I. León-Pacheco^{1©}; Miguel A. Lobato-Ureche^{1©}; Mario A. García-Davila²⁰, Carlos G. Muñoz-Perea²⁰; Hermes Aramendiz-Tatis³⁰

Recibido para publicación: Marzo 4 de 2019 - Aceptado para publicación: Mayo 24 de 2019

RESUMEN

El ají dulce tipo topito es considerado una las principales hortalizas en la región Caribe de Colombia debido a su tradición productiva y consumo cotidiano en al menos seis de los siete departamentos de la costa atlántica. En este sentido el desarrollo de líneas investigación en mejoramiento genético que conduzcan a la obtención de cultivares de mayor productividad cobran gran relevancia. Por ello, con el fin de determinar la variabilidad morfológica y agronómica de la colección de germoplasma de ají dulce del Caribe colombiano y utilizarla en programas de mejoramiento genético, se evaluaron 45 descriptores (cualitativos y cuantitativos) de Capsicum spp. en 125 accesiones procedentes de los siete departamentos de la región Caribe de colombia. Para ello, se empleó un diseño completamente al azar en nueve plantas. El análisis de los datos se realizó a través del método de clasificación de Ward utilizando la distancia de Gower. Los resultados revelan polimorfismo en 19 características cualitativas, con una variabilidad del 67,9%. El análisis mixto de los datos permitió separar las especies del género Capsicum de la colección en estudio; así mismo, la variabilidad fenotípica de la colección muestra potencial para su uso en programas de fitomejoramiento genético en caracteres de interés como calidad de fruto, arquitectura de planta y producción.

Palabras clave: Datos mixtos; Descriptores; Índice de gower; Recursos fitogenéticos; Variabilidad fenotípica.

Email: ecorrea@agrosavia.co

ABSTRACT

"Topito" sweet pepper is considered one of the main vegetables in the colombian Caribbean region due to tradition and daily consumption in at least six of the seven continental departments of the Atlantic coast. Development of research lines for genetic improvement to obtain increased production cultivars are highly relevant. To determine the morphological and agronomic variability of the sweet pepper germplasm collection in the colombian Caribbean to use it for genetic improvement, a characterization with 45 qualitative and quantitative descriptors for Capsicum spp. in 125 accessions for the colombian Caribbean was carried out. A complete randomized design was used for nine plants. Data analysis was done through Ward's classification method using Gower's distance. Results showed polymorphism in 19 qualitative characteristics, with 67.9% variability. Data mixed analysis allowed to separate Capsicum genus species of the collection; likewise, collection phenotypic variability has potential for using in genetic breeding programs for desirable characters such as fruit quality, plant architecture and production.

Key words: Mixed data; Descriptors; Gower index; Plant genetic resources; Phenotypic variability.

Cómo citar

Correa-Álvarez, E., León-Pacheco, R., Lobato-Ureche, M., García-Davila, M., Muñoz-Perez, C. y Aramendiz-Tatis, H. 2019. Caracterización morfoagronómica de la colección de germoplasma de ají dulce (Capsicum spp.) del Caribe colombiano. Temas Ágrarios, 24(2):81-95. https://doi.org/10.21897/rta.v24i2.1998

Temas Agrarios 2019. Este artículo se distribuye bajo los términos de la Licencia Creative Commons Attrubution 4.0 (https://creative.commons.org/licenses/by-nc/4.0/deed.es), que permite copiar, redistribujr, remezclar, transformar y crear a partir del material, de forma no comercial, dando crédito y licencia de forma adecuada a los autores de la obra.

¹Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Centro de Investigación Caribia, Zona Bananera (Colombia).

²Universidad Nacional de Colombia Sede Palmira; Facultad de Ciencias Agropecuarias, Palmira (Colombia).

³Universidad de Córdoba, Facultad de Ciencias Agrícolas, Montería (Colombia).

^{*}Autor para correspondencia: Ender Correa

INTRODUCCIÓN

Los ajíes son unas de las hortalizas de mayor consumo a nivel mundial; su comercialización ha registrado un crecimiento positivo debido a su diversificación en usos alimenticios, y ornamentales industriales, medicinales (Duran, 2013; Srivastava y Mangal, 2019; Costa et al., 2019). En la región Caribe de Colombia se estiman unos 4.284 productores con unidades productivas en promedio de 0,25 ha en cultivos de ajíes dulce tipo topito, que se han consolidado como actividad económica rural debido a la gran aceptación del producto en el mercado regional por sus características organolépticas (sabor, aroma y color) y diversos usos en la preparación de platos típicos de la gastronomía costeña (MINCIT, 2013; Pinto et al., 2013; Agronet, 2019).

A nivel mundial para el año 2017, las estadísticas oficiales para ajíes (chiles y pimientos) indican una producción de 36 millones de toneladas producidas en 1,98 millones de hectáreas, con rendimientos promedios de 7 t ha⁻¹; en donde Colombia se posiciona en los puestos 89, 52 y 66 en producción, área cosechada y rendimientos respectivamente (FAOSTAT, 2019). En Colombia, las estadísticas para el año 2018 reportadas por Agronet (Agronet, 2019) en ajíes dulces señalan una producción de 7.363 toneladas producidas en 1.071 hectáreas en la región Caribe y con rendimientos medios de 8,7 t ha-1. Así mismo, el Valle del Cauca registra rendimientos medios de 25,3 t ha-1 producto del uso de variedades mejoradas e implementación de paquetes tecnológicos, lo que evidencia los rezagos del cultivo en la región Caribe y a que a su vez generan demandas y oportunidades de investigación en fitomejoramiento y manejo agronómico para el cultivo de ají dulce.

El valor de los recursos fitogenéticos radica en su utilización para la generación de nuevos cultivares con características agronómicas superiores y de interés. En este sentido, los estudios de caracterización cumplen el propósito de dar a conocer las variantes génicas presentes en las colecciones de germoplasma para posteriormente ser empleadas en programas de mejoramiento genético vegetal (Vallejo y Estrada, 2013; Hidalgo y Vallejo, 2014).

América es considerado como el centro de origen de las especies cultivadas del género Capsicum, el cual comprende los pimentones y ajíes (picantes y dulces); este género tiene más 73 mil accesiones conservadas a nivel mundial, y donde Colombia posee alrededor 1% del germoplasma (FAO, 2010; Barchenger y Bosland, 2019; Barchenger et al., 2019; Srivastava y Mangal, 2019). Así mismo, el germoplasma de Capsicum ha sido objeto de diversos estudios de caracterización morfológica, agronómica, bioquímica, molecular v funcional entre otros, tanto a nivel mundial como en Colombia, a fin de identificar accesiones que sirvan como fuentes de genes en el mejoramiento de características para la resistencia a estreses abióticos y bióticos y de otros rasgos de interés (contenidos de capsaicina, carotenoides, formas, tamaños, colores, etc.) para las diferentes agroindustrias demandantes de ajíes (Villota-Cerón et al., 2012, Araújo et al., 2019; Guzmán et al., 2019; Jesus et al., 2019; Mendes et al., 2019; Rahevar et al., 2019).

La caracterización de recursos fitogenéticos requiere del manejo y análisis de un gran número de mediciones sobre cada accesión del germoplasma; razón por la cual, es usual la utilización de métodos multivariados, ya que estos permiten el análisis de las accesiones incluvendo múltiples características manera simultánea y sin dejar de considerar la relación existente entre ellas. Generalmente, la caracterización de germoplasma involucra el registro de variables de naturaleza cuantitativa y cualitativa. El índice de Gower, admite realizar un análisis unificado de descriptores, es decir, descriptores de tipo cuantitativo y cualitativo (mixtos) simultáneamente. Así mismo, dentro

de la gama de análisis multivariados, el método Ward, permite la generación de grupos lo más homogéneos posible, para clasificar las accesiones en estudio (Franco e Hidalgo, 2003).

Considerando la importancia de los ajíes dulces en la región y la necesidad de documentar V generar valor agregado genético colectado; recurso investigación tuvo como objetivo caracterizar morfo-agronómicamente el germoplasma de ajíes dulces colectados en la región Caribe colombiana con fines de uso para desarrollar un programa de mejoramiento genético de la especie que conduzca al desarrollo de nuevos cultivares con características agronómicas germoplasma superiores al utilizado actualmente por los productores de la región.

MATERIALES Y MÉTODOS

La investigación se desarrolló en Agrosavia CI. Caribia, ubicado en Zona Bananera (Magdalena), con coordenadas 10° 47′ N y 74° 10′ W, altitud de 18 m.s.n.m., temperatura media de 28°C, humedad relativa del 82%, precipitación media anual de 1280 mm y zona de vida de bosque seco tropical. El recurso genético correspondió a 125 accesiones de ají dulce que conforman la colección de germoplasma de Agrosavia CI. Caribia colectada en 2013 en siete departamentos de la región Caribe colombiana (Tabla 1).

Εl experimento se estableció bajo diseño completamente al azar con nueve observaciones por accesión. experimental, constó de una planta sembrada a 1 x 1 m entre plantas y surcos respectivamente; así mismo, para asegurar la uniformidad de la información, se sembraron surcos bordes y los datos experimentales se tomaron en plantas en plena competencia. Se utilizaron los descriptores para Capsicum spp. (IPGRI et al., 1995), registrando 45 caracteres (28 cualitativos y 17 cuantitativos) responsables de la morfología, arquitectura de la planta y características relacionadas con aspectos agronómicos. Para el análisis de los datos, se descartaron los descriptores que no presentaron variación; para las variables cuantitativas y cualitativas se utilizaron los promedios y modas respectivamente. El análisis multivariado de los datos se realizó mediante el método de clasificación de Ward utilizando la distancia de Gower, con el uso del programa estadístico infoStat, versión 2017 (Di Rienzo *et al.*, 2017).

RESULTADOS Y DISCUSIÓN

Nueve descriptores fueron descartados del análisis multivariado por no presentar variación: forma tallo (cilíndrica), color del tallo (verde), forma de la corola (rotácea), pigmentación del cáliz (ausente), manchas antocianínicas (ausente), cuello en la base del fruto (ausente), apéndice del fruto vestigio de la floración (ausente), color del fruto en estado intermedio (verde) y color de la semilla (amarillo) (Tabla 2). Al respecto, Votava et al. (2005) y Paran y Van Der Knaap (2007) señalan que en muchas regiones es común por parte de los agricultores, realizar ciclos de selección hacia atributos morfológicos y agronómicos de interés (pungencia, forma, tamaño, peso y color de fruto) en los cultivares locales de Capsicum.

En este sentido, estudios realizados por Medina et al. (2006) y Nicolaï et al. (2013) indican que el principal efecto negativo de las selecciones artificiales en *Capsicum* es la reducción en su base genética; por tanto, la ausencia de variabilidad en atributos cualitativos puede ser explicada por procesos de selección direccional hacia atributos deseables por los productores, lo que generaría una reducción en la diversidad de las características fenotípicas como consecuencia de procesos de domesticación, efecto fundador y deriva genética; complementariamente Marame et al. (2009), Tang et al. (2010) y Occhiuto et al. (2014), señalan que el nivel de variación dentro

de las especies domesticadas de Capsicum es menor que en sus parientes silvestres. Lo descrito anteriormente, podría ser el caso de los ajíes dulces de la región Caribe de Colombia; donde los principales cultivares corresponden a los denominados regionalmente como "ají topito" y "ají chino", que son los tradicionalmente cultivados y seleccionados por los agricultores; ende, en este escenario muchas características morfológicas de interés podrían haber quedado fijadas en estos materiales como resultado de procesos continuos de selección. Se encontró que 19 de los 28 descriptores cualitativos presentaron polimorfismo,

que representa un 67,9% de atributos con variabilidad. Al considerar el número de variantes o estados totales de los descriptores morfolalelos. evaluados, es decir. 126 se detectaron 71 en las accesiones del estudio, lo que representa un 56,4% de polimorfismos cualitativos (Tabla moderado polimorfismo encontrado. podría explicarse debido al hecho de que 123 de las accesiones de la colección (98,4%) corresponden a la especie Capsicum chinense (cultivar ají topito) y solamente dos accesiones (AjCo62 y AjMa03) pertenecen a la especie Capsicum annuum (cultivar ají chino) (Tabla 1).

Tabla 1. Colección de germoplasma de Capsicum (125 accesiones), Agrosavia CI Caribia.

Municipio, Departamento	Especie		Código	Accesión		Altitud (m.s.n.m)	Temp (°C)	Pma (mm)	c.c.
Luruaco, Atlántico	C. chinense	AjAt01				40	27,8	1148	Aw
Manatí, Atlántico	C. chinense	AjAt03	AjAt02			7	28,5	1004	Aw
Suán, Atlántico	C. chinense	AjAt05	AjAt07	AjAt04	AjAt06	7	28,5	1079	Aw
Hatillo de Loba, Bolívar	C. chinense	AjBo01				28	28,3	2261	Am
Carmen de Bolívar, Bolívar	C. chinense	AjBo02				158	26,9	1179	Aw
Codazzi, Cesar	C. chinense	AjCe03	AjCe04			135	28,1	1560	Aw
El Copey, Cesar	C. chinense	AjCe01	AjCe02			136	27,5	1369	Aw
Cereté, Córdoba	C. chinense	AjCo01	AjCo27	AjCo40	AjCo52	15	27,7	1264	Aw
		AjCo05	AjCo28	AjCo41	AjCo53				
		AjCo13	AjCo29	AjCo42	AjCo54				
		AjCo14	AjCo30	AjCo43	AjCo55				
		AjCo15	AjCo31	AjCo44	AjCo56				
		AjCo19	AjCo32	AjCo45	AjCo57				
		AjCo20	AjCo34	AjCo46	AjCo58				
		AjCo21	AjCo35	AjCo47	AjCo60				
		AjCo22	AjCo36	AjCo48	AjCo85				
		AjCo23	AjCo37	AjCo49	AjCo86				
		AjCo24	AjCo38	AjCo50					
		AjCo26	AjCo39	AjCo51					
Canalete, Córdoba	C. chinense	AjCo79	AjCo80	AjCo81	AjCo82	52	26,8	1338	Aw
		AjCo83	AjCo84						
Lorica, Córdoba	C. chinense	AjCo67	AjCo68	AjCo69	AjCo70	14	27,6	1270	Aw
		AjCo71	AjCo72	AjCo74					
Los Córdobas, Córdoba	C. chinense	AjCo78				8	26,9	1509	Aw
Montería, Córdoba	C. chinense	AjCo02	AjCo07	AjCo10	AjCo25	20	27,4	1225	Aw
		AjCo03	AjCo08	AjCo11	AjCo59				

Temp: temperatura; Pma: precipitación media anual; C.C: clasificación climática de Köppen – Geiger. Aw: clima de sabana tropical; Am: clima tropical del monzón; BSh: clima semiárido caliente.

Continuación Tabla 1. Colección de germoplasma de Capsicum (125 accesiones), Agrosavia CI Caribia.

Municipio, Departamento	Especie		Código	Accesión		Altitud (m.s.n.m)	Temp (°C)	Pma (mm)	c.c.
		AjCo06	AjCo09	AjCo12	AjCo61		,		
		AjCo63							
	C. annuum	AjCo62							
San Bernardo del Viento, Córdoba	C. chinense	AjCo75	AjCo77			8	27,5	1365	Aw
San Carlos, Córdoba	C. chinense	AjCo65	AjCo64	AjCo66		15	27,7	1460	Aw
San Pelayo, Córdoba	C. chinense	AjCo16	AjCo17			10	27,6	1349	Aw
Barrancas, La Guajira	C. chinense	AjGu01	AjGu02			158	27,5	1172	Aw
Dibulla, La Guajira	C. chinense	AjGu06	AjGu07	AjGu08	AjGu09	10	28,3	1426	Aw
		AjGu10	AjGu11						
Ciénaga, Magdalena	C. chinense	AjMa07	AjMa08	AjMa10		6	28	622	BSh
Fundación, Magdalena	C. chinense	AjMa11				45	27,9	1390	Aw
Remolino, Magdalena	C. chinense	AjMa05	AjMa06			75	28,2	964	Aw
Sitio Nuevo, Magdalena	C. annuum	AjMa03				6	28,2	906	Aw
	C. chinense	AjMa04							
Zona Bananera, Magda- Iena	C. chinense	AjMa02				26	27,8	1356	Aw
Buenavista, Sucre	C. chinense	AjSu01				95	27,4	1152	Aw
Ovejas, Sucre	C. chinense	AjSu02	AjSu08	AjSu11	AjSu14	255	26,3	1294	Aw
		AJSu03	AjSu09	AjSu12					
		AjSu06	AjSu10	AjSu13					
San Marcos, Sucre	C. chinense	AjSu04				25	27,8	1858	Aw
Sincelejo, Sucre	C. chinense	AjSu05				202	26,6	1164	Aw
Sucre, Sucre	C. chinense	AjSu07				17	27,9	2472	Am

Temp: temperatura; Pma: precipitación media anual; C.C: clasificación climática de Köppen – Geiger. Aw: clima de sabana tropical; Am: clima tropical del monzón; BSh: clima semiárido caliente.

En este sentido, diversos investigadores como Esbaugh (1993) y Pickersgill (1997); indican que C. annuum y C. chinense corresponden a las especies de mayor dispersión mundial del género, siendo C. annuum la más ampliamente sembrada y domesticada; sin embargo, por su baja adaptación a trópicos húmedos bajos, es reemplazada en estas áreas por las especies C. chinense y C. frutenscens. Así mismo, autores como Votava et al. (2002) señalan que uno de los objetivos de la conservación ex situ, es mantener tantos alelos como sea factible, a fin de mantener la mayor variabilidad genética en conjuntos de accesiones del menor tamaño posible. La tabla 3, muestra el agrupamiento de las

accesiones utilizando variables cuantitativas y cualitativas, es decir, datos mixtos (continuos y categóricos). Se determinaron cinco grupos con 40, 37, 20, 26 y 2 accesiones para los grupos GI, GII, GIII, GIV y GV respectivamente. El GI incluye accesiones provenientes de cinco de los siete departamentos donde se efectuó la colecta. Estos departamentos son: Córdoba, Atlántico, Bolívar, Cesar y Sucre con 35, 2, 1, 1 y 1 accesiones respectivamente. Así mismo, los atributos cualitativos por lo que se caracteriza principalmente este grupo son: habito de crecimiento (HC) erecto, antocianina del nudo (AN) verde, margen de la lámina foliar (MLF) ciliada, color de la hoja (CH) verde oscuro,

pubescencia en las hojas (PH) densa, forma de la hoja (FH) oval, posición de las flores (PF) erecta, color de la corola (CC) verde claro, margen del cáliz (MC) dentado, constricción anular del cáliz (CAC) presente, color de las anteras (CA) verde oscuro, exserción del estigma (EE) al mismo nivel, color del filamento (CF) morado, forma del fruto (FAF) intermedio, forma del ápice del fruto (FAF) puntudo, forma del fruto

con la unión con el pedicelo (FFUP) truncado, epidermis del fruto (EF) lisa, color del fruto en estado maduro (CFM) rojo y arrugamiento transversal del fruto (ATF) intermedio. Estados únicos ó morfolalelos presentes en un único individuo de la colección de estudio, fueron encontrados en este grupo para los descriptores: CA verde claro (AjCo66), CF lila (AjCo01) y azul (AjCo56) y EF semirrugosa (AjCo02) (Tabla 4).

Tabla 2. Descriptores cualitativos registrados en 125 accesiones de *Capsicum* spp de la colección de germoplasma de Agrosavia CI Caribia.

Descriptor	Moda general	Estados Descriptor	Estados Encontrados
Habito de crecimiento HC	Compacta	4	3
Forma del tallo FT	Cilíndrico	3	1
Color del tallo CT	Verde	4	1
Antocianina del nudo AN	Verde	4	3
Margen de la lámina foliar MLF	Ciliada	3	2
Color de la hoja CH	Verde claro	8	3
Pubescencia en las hojas PH	Densa	3	3
Forma de la hoja FH	Oval	3	3
Forma de la corola FC	Rotácea	3	1
Pigmentación en el cáliz PC	Ausente	2	1
Color de la corola CC	Verde pálido	9	2
Margen del cáliz MC	Dentado	4	2
Constricción anular del cáliz CAC	Presente	2	2
Color de las anteras CA	Verde oscuro	9	6
Exserción del estigma EE	Al mismo nivel	3	3
Color del filamento CF	Morado	7	5
Manchas anticanónicas MA	Ausente	2	1
Posición de las flores PF	Erecta	3	3
Forma del fruto FF	Triangular	6	5
Cuello en la base fruto CBF	Ausente	2	1
Apéndice del fruto vestigio de la floración AFVF	Ausente	2	1
Forma del ápice del fruto FAF	Puntudo	5	4
Epidermis del fruto EF	Lisa	3	2

^{*}Valores en negrilla corresponden a descriptores que no presentaron polimorfismo en la colección de germoplasma de *Capsicum*.

Continuación Tabla 2. Descriptores cualitativos registrados en 125 accesiones de *Capsicum* spp de la colección de germoplasma de Agrosavia CI Caribia.

Descriptor	Moda general	Estados Descriptor	Estados Encontrados
Forma del fruto en la unión con el pedicelo FFUP	Truncado	5	4
Color del fruto maduro CFM	Rojo	13	4
Color fruto estado intermedio CFI	Verde	7	1
Arrugamiento transversal del fruto ATF	Intermedio	3	3
Color de la semilla CS	Amarillo	4	1
TOTAL		126*	71*

^{*}Valores en negrilla corresponden a descriptores que no presentaron polimorfismo en la colección de germoplasma de *Capsicum*.

El GII comprende accesiones provenientes de seis departamentos, los cuales son: Córdoba, Guajira, Cesar, Atlántico, Sucre y Magdalena con 21, 5, 4, 3, 3 y 1 accesiones respectivamente. Los atributos cualitativos por lo que se caracteriza este grupo principalmente son: HC compacto, AN verde, MLF ciliada, CH verde claro, PH densa, FH oval, PF erecta, CC verde claro, MC dentado, CAC presente, CA morado claro, EE al mismo nivel, CF morado, FF intermedio, FAF puntudo, FFUP truncado, EF lisa, CFM rojo y ATF intermedio (Tabla 4).

El GIII abarca accesiones provenientes de los departamentos de Córdoba, Atlántico, Guajira y Sucre con 16, 2, 1 y 1 accesiones respectivamente. Los caracteres cualitativos por lo que se destaca este grupo principalmente son: HC compacto, AN verde, MLF ciliada, CH verde claro, PH densa, FH oval, PF erecta, CC verde claro, MC dentado, CAC presente, CA verde oscuro, EE al mismo nivel y exserto, CF morado oscuro, FFtriangular, FAF puntudo, FFUP truncado, EF lisa, CFM rojo y ATF intermedio. Además, este grupo registra un estado único para el descriptor CFM café rojizo (AjCo09) (Tabla 4).

El GIV presenta accesiones provenientes de los departamentos de Sucre, Magdalena, Córdoba, Guajira y Bolívar con 9, 7, 7, 2 y 1

accesiones respectivamente. Los descriptores cualitativos por lo que se destaca este grupo principalmente son: HC compacto, AN verde, MLF entera, CH verde, PH intermedia, FH oval, PF erecta, CC verde claro, MC dentado, CAC presente, CA morado claro, EE exserto, CF morado, FF intermedio, FAF puntudo, FFUP truncado, EF lisa, CFM rojo y ATF intermedio (Tabla 4).

FΙ GV incluye solamente dos los provenientes de accesiones departamentos de Córdoba y Magdalena. Los descriptores cualitativos por lo que se caracteriza este grupo principalmente son: HC compacto, AN verde y morado oscuro, MLF entera, CH verde claro, PH escasa, FH lanceolada, PF intermedia y pendiente, CC blanco, MC dentado, CAC ausente, CA verde oscuro, EE exserto, CF blanco, FF en bloque y acampanulado en bloque, FAF hundido y hundido puntudo, FFUP cordado y lobulado, EF lisa, CFM rojo y ATF levemente corrugado. Así mismo, presenta estados únicos para los descriptores AN morado oscuro (AjCo62), PF pendiente (AjMa03) e intermedia (AjCo62), FF en bloque (AjCo62) y acampanulado en bloque (AjMa03), FAF hundido y puntudo (AjMa03) y FFUP cordado (AjMa03) y lobulado (AjCo62) (Tabla 4).

Tabla 3. Agrupamiento de 125 accesiones de la colección de germoplasma de *Capsicum* de Agrosavia CI Caribia obtenidos a partir del método de Ward (1963) e índice de Gower (1971).

Grupo					Acces	siones				
	AjAt01	AjAt03	AjBo02	AjCe02	AjCo01	AjCo02	AjCo03	AjCo05	AjCo06	AjCo07
	AjCo17	AjCo23	AjCo25	AjCo28	AjCo31	AjCo32	AjCo35	AjCo36	AjCo37	AjCo38
ı	AjCo41	AjCo46	AjCo47	AjCo51	AjCo53	AjCo54	AjCo56	AjCo61	AjCo63	AjCo64
	AjCo66	AjCo68	AjCo69	AjCo71	AjCo72	AjCo74	AjCo75	AjCo83	AjCo85	AjSu03
	AjAt02	AjAt04	AjAt06	AjCe01	AjCe03	AjCe04	AjCe04	AjCo08	AjCo11	AjCo12
п	AjCo13	AjCo16	AjCo20	AjCo21	AjCo24	AjCo26	AjCo30	AjCo39	AjCo43	AjCo44
	AjCo45	AjCo49	AjCo52	AjCo55	AjCo58	AjCo59	AjCo78	AjCo80	AjGu01	AjGu06
	AjGu07	AjGu08	AjGu09	AjMa04	AjSu09	AjSu12	AjSu14			
Ш	AjAt05	AjAt07	AjCo09	AjCo10	AjCo19	AjCo27	AjCo29	AjCo34	AjCo40	AjCo42
•••	AjCo57	AjCo65	AjCo67	AjCo70	AjCo77	AjCo79	AjCo82	AjCo86	AjGu10	AjSu08
	A'D 01	A:C 14	A:C 22	A:C 40	A:C 50	A:C 60	A:C 01	A:C 0.4	A:C 02	A:C 11
13/	AjBo01	AjCo14	AjCo22	AjCo48	AjCo50	AjCo60	AjCo81	AjCo84	AjGu02	AjGu11
IV	AjMa02	AjMa05	AjMa06	AjMa07	AjMa08	AjMa10	AjMa11	AjSu01	AjSu02	AjSu04
	AjSu05	AjSu06	AjSu07	AjSu10	AjSu11	AjSu13				
V	AjMa03	AjCo62			,	,				

Tabla 4. Descriptores cualitativos de la colección de germoplasma de Capsicum spp. de Agrosavia CI Caribia

	Grupos							
Categoria	GI (40)	GII (37)	GIII (20)	GIV (26)	GV (2)	EU (accesión)		
Habito de crecimiento								
Compacta	14	22	18	21	2			
Erecta	24	12	2	5	-			
Intermedia	2	_	-	_	-			
Antocianina del nudo								
Verde	38	29	18	23	1			
Morado claro	2	8	2	3	-			
Morado oscuro	-	-	-	-	1*	AjCo62		

EU: estados únicos; **GI, GII, GIII, GIV, GV:** grupos obtenidos a partir del método de Ward (1963) e índice de Gower (1971); *valores resaltados corresponden a estados únicos encontrados en el germoplasma de estudio.

Continuación de Tabla 4. Descriptores cualitativos de la colección de germoplasma de *Capsicum* spp. de Agrosavia CI Caribia

_	Grupos							
Categoria	GI (40)	GII (37)	GIII (20)	GIV (26)	GV (2)	EU (accesión)		
Margen de la lámina foliar								
Entera	5	17	1	18	2			
Ciliada	35	20	19	8	-			
Color de la hoja								
Verde claro	6	28	16	12	2			
Verde	14	2	4	13	-			
Verde oscuro	20	7	-	1	-			
Pubescencia en las hojas								
Escasa	5	3	1	6	2			
Intermedia	9	10	6	19	-			
Densa	26	24	13	1	-			
Forma de la hoja								
Deltoide	11	13	9	12	-			
Oval	29	24	11	14	-			
Lanceolada	-	-	-	-	2			
Posición de las flores								
Pendiente	-	-	-	-	1	AjMa03		
Intermedia	-	-	-	-	1	AjCo62		
Erecta	40	37	20	26				
Color de la corola								
Blanco	-	-	-	-	2			
Verde claro	40	37	20	26	-			
Margen del cáliz								
Intermedio	2	-	7	3	-			
Dentado	38	37	13	23	2			
Constricción anular del cáliz								
Ausente	-	-	-	-	2			
Presente	40	37	20	26	-			

EU: estados únicos; **GI, GII, GIII, GIV, GV:** grupos obtenidos a partir del método de Ward (1963) e índice de Gower (1971); *valores resaltados corresponden a estados únicos encontrados en el germoplasma de estudio.

Continuacion, Tabla 4. Descriptores cualitativos de la colección de germoplasma de *Capsicum* de Agrosavia CI Caribia.

	Grupos						
Categoria	GI (40)	GII (37)	GIII (20)	GIV (26)	GV (2)	EU (accesión)	
Color de las anteras							
Morado claro	10	28	-	12	-		
Negro	1	1	-	2	-		
Verde oscuro	27	7	19	11	2		
Verde intermedio	-	1	1	-	-		
Verde claro	1	-	-	-	-	AjCo66	
Amarillo claro	1	-	-	1	-		
Exserción del estigma			,				
Inserto	-	2	-	1	-		
Al mismo nivel	25	28	10	11	-		
Exserto	15	7	10	14	2		
Color del filamento							
Blanco	1	-	-	-	2		
Morado	35	36	5	21	-		
Lila	1	-	-	-	-	AjCo01	
Morado oscuro	2	1	15	5	-		
Azul	1	-	-	-	-	AjCo56	
Forma del fruto							
Alargado	8	5	1	2	-		
Intermedio	21	18	9	16	-		
Triangular (tipo topito)	11	14	10	8	-		
Bloque	-	-	-	-	1	AjCo62	
Acampanulado y en bloque	-	-	-	-	1	AjMa03	
Forma del ápice del fruto							
Puntudo	23	31	15	21	-		
Romo	14	3	5	4	-		
Hundido	3	3	-	1	1		
Hundido y puntudo	-	-	-	-	1	AjMa03	
Forma del fruto con la unión con el pedicelo							
Obtuso	8	5	1	2	-		
Truncado	32	32	19	24	-		
Cordado	-	-	-	-	1	AjMa03	
Lobulado	-	_	-	-	1	AjCo62	

EU: estados únicos; **GI, GII, GIV, GV:** grupos obtenidos a partir del método de Ward (1963) e índice de Gower (1971); *valores resaltados corresponden a estados únicos encontrados en el germoplasma de estudio.

Continuacion, Tabla 4. Descriptores cualitativos de la colección de germoplasma de *Capsicum* de Agrosavia CI Caribia.

	Grupos							
Categoria	GI (40)	GII (37)	GIII (20)	GIV (26)	GV (2)	EU (accesión)		
Tipo de epidermis del fruto								
Lisa	39	37	20	26	2			
Semirrugosa	1	-	-	-	-	AjCo02		
Color del fruto en estado maduro			,					
Café rojizo	-	-	1	-	-	AjCo09		
Rojo	40	32	18	26	2			
Rojo oscuro	-	2	-	-	-			
Rojo intermedio	-	3	1	-	-			
Arrugamiento transversal del fruto								
Levemente corrugada	17	17	9	7	2			
Intermedio	22	20	11	17	-			
Muy corrugado	1	-	-	2	-			

EU: estados únicos; **GI, GII, GIII, GIV, GV:** grupos obtenidos a partir del método de Ward (1963) e índice de Gower (1971); *valores resaltados corresponden a estados únicos encontrados en el germoplasma de estudio.

Las diferencias del GV con respecto al resto de grupos se debe a que las accesiones de este grupo corresponden a cultivares de ají dulce tipo "chino" (*Capsicum annuum*) que difieren a nivel de especie del resto de accesiones de la colección que pertenecen a cultivares de ají dulce tipo "topito" (*Capsicum chinense*).

Así mismo, al considerar la moda de los 19 descriptores cualitativos polimórficos de los grupos determinados, se encuentra que el GV difiere en 11 (57,9%), 12 (63,2%), 13 (68,4%) y 14 (73,7%) descriptores con los grupos GIII, GIV, GII y GI respectivamente (Tabla 4).

Al respecto, *C. annuum*, *C. chinense y C. frutescens* están integradas por características morfológicas, derivadas de parientes silvestres de diferentes especies; son potencialmente fáciles de cruzar y, por tanto, tienen la capacidad de producir híbridos interespecíficos. Sin embargo, es posible su discriminación mediante el empleo distancias combinadas (cualitativas y

cuantitativas) con el método UPGMA (Gomes et al., 2019). Estos resultados concuerdan con los obtenidos por Sudré et al. (2010), donde la caracterización morfo-agronómica usando simultáneamente variables morfológicas (cualitativas) y agronómicas (cuantitativas) permitió la separación de especies del género *Capsicum* en la colección de estudio.

Las accesiones con estados únicos adquieren relevancia en la conservación, ya que estos pueden corresponder a atributos con valor potencial (Medina *et al.*, 2006). Un ejemplo de ello es el carácter color del fruto, el cual, es un atributo importante tanto para el mercado de consumo fresco como para la agroindustria de procesados (Pérez-Gálvez *et al.*, 2004).

En este sentido autores como Duran (2013), Lang et al. (2004) y Junior e Silva et al. (2013) indican que se ha incrementado la demanda de frutos de colores variados en *Capsicum*; por ende, es considerado como atributo de importancia económica en el

desarrollo de cultivares mejorados. Adicionalmente Osawaru et al. (2015).polimorfismo único expresan que el puede ser útil como marcador de otros atributos estrechamente ligados, es decir, que bajo esta condición algunos atributos morfológicos pueden ser considerados como marcadores genéticos.

La tabla 5, relaciona los descriptores cuantitativos considerados en el estudio. El mayor rendimiento por planta se obtuvo en las accesiones que componen el GIV con 861,37 g/planta; seguido del GI (719,1 g/planta), GV (699,79 g/planta), GIII (666,31 g/planta) y GII (451,02 g/planta). El GV fue superior en características como precocidad (DFlor=

92,5 días; Dfruc= 110 días), dimensiones de fruto (LonF= 6,36 cm; AnF= 2,68 cm; EPF= 1,95 mm) y peso promedio de fruto (PPF= 8,49 g); pero inferior al resto de grupos en caracteres como: NFP (86,08 frutos/planta), dimensiones planta (15,24 mm),(AnP=67,1 cm; AltP=48,8 cm; NRam= 3,2 ramas) v dimensiones de hoja (AnH=2,51 cm; LonH= 6,23 cm). La superioridad en rendimiento de las accesiones que componen el GIV, puede explicarse a características como precocidad (Dfruc= 135,6 días) v por consiguiente mayor número de cosechas (7,08 cosechas); componentes del rendimiento como PPF (5,2 g) v NFP (172,75 frutos/planta); v dimensiones del fruto (LonF= 5,4 cm; AnF= 2,4 cm).

Tabla 5. Descriptores cuantitativos determinados en la colección de germoplasma de *Capsicum* spp de Agrosavia, CI Caribia.

DESCRIPTOR			Grupos		
DESCRIPTOR	GI	GII	GIII	GIV	GV
Número de Cosechas NCos	6,5±1,5	5,0±1,1	6,8±1,0	7,1±1,2	7,3±2,0
Rendimiento Rend	719,1±218,5	451,0±163,8	666,3±236,1	861,4±265,1	699,8±34,7
Peso promedio de fruto PPF	5.0 ± 0.7	4,7±0,5	4,3±0,7	5,2±0,9	8,5±0,1
Número de frutos por planta NFP	150,4±50,6	100,4±33,9	157,2±45,7	172,8±66,1	86,1±4,4
Ancho de la hoja AnH	6,3±0,6	5,2±0,7	5,0±0,8	5,1±0,7	2,5±0,6
Longitud de la hoja LonH	12,2±1,0	10,1±1,3	10,1±1,4	10,5±1,4	6,2±0,3
Número de ramas NRam	5,8±0,8	$5,3\pm0,6$	$5,5\pm0,6$	$5,4\pm0,8$	$3,2\pm0,8$
Ancho de planta AnP	73,3±11.1	70,7±10,8	82,0±9,8	92,7±11,1	67,1±10,3
Altura de planta AltP	87,0±8,0	76,2±11,8	82,5±9,4	95,4±17,6	48,8±17,5
Diámetro del tallo DTall	20,6±2,7	19,6±4,1	18,9±2,3	25,7±4,3	15,2±0,7
Longitud del tallo LonT	7,4±2,9	7,8±2,8	13,3±3,0	12,2±3,6	10,7±2,0
Número de lóculos NLoc	2,1±9,1	$2,0\pm0,1$	2,0±0,1	2,0±0,1	2,8±0,3
Ancho de fruta AnF	$2,4\pm0,2$	2,4±0,2	2,5±0,6	2,4±0,2	2,7±0,1
Longitud del fruto LonF	5,4±0,4	5,1±0,5	4,9±0,8	5,4±0,4	6,4±1,9
Espesor de la pared del fruto EPF	1,5±0,2	1,5±0,1	1,5±0,2	1,6±0,2	1,9±0,0
Días a floración DFlor	133,8±9,6	139,2±8,2	127,2±10,5	121,2±8,7	92,5±3,5
Días de fructuficación DFruc	148,3±14,2	154,7±11,8	139,7±13,0	135,6±8,5	110,0±9,9

NCos: número de cosechas(#); Rend: rendimiento (g/planta); PPF: peso promedio del fruto (g); NFP: número de frutos por planta(#); AnH: ancho de la hoja (cm); LonH: longitud de la hoja (cm); NRam: número de ramas (#); AnP: ancho de planta (cm); AltP: altura de planta (cm); DTall: diámetro del tallo (mm); LonT: longitud del tallo (cm); NLoc: número de lóculos (#); AnF: ancho de fruto (cm); LonF: longitud del fruto (cm); EPF: espesor de la pared del fruto. (mm); DFlor: días a floración (día); DFruc: días a fructificación (día).

CONCLUSIONES

El análisis mixto de los datos de caracterización morfo-agronómica permitieron formar cinco grupos de accesiones de ají dulce y separar las especies del género *Capsicum* en la colección de estudio.

Los procesos continuos de selección por parte de los agricultores han influido en la fijación de caracteres morfológicos en los cultivares regionales de ají dulce.

La variabilidad fenotípica determinada indica un potencial para su uso en programas de mejoramiento genético, especialmente para caracteres de interés como calidad de fruto (forma, longitud y peso medio del fruto), producción (rendimiento y número de frutos por planta) y arquitectura de planta (habito de crecimiento).

AGRADECIMIENTOS

Corporación Colombiana de Investigación Agropecuaria - Agrosavia y al Ministerio de Agricultura y Desarrollo Rural por la financiación con fondos públicos para esta investigación.

Conflicto de Intereses

Los autores declaran que es un trabajo orginal y no existío conflicto de intereses de ningún tipo en la elaboración y publicación del manuscrito.

REFERENCIAS

- Agronet. 2019. Área Cosechada, Producción y Rendimiento de Ají dulce 2006-2018. En: Agronet https://www.agronet.gov.co/estadistica/ Paginas/home.aspx
- Araújo, L., Neves, L., Sousa, D., Zeviani, W., Silva, L. and Marostega, T. 2019. Biochemical descriptors: importance of the genetic divergence study in peppers. Horticultura Brasileira 37: 210-214. doi.org/10.1590/s0102-053620190212

- Barchenger, D. and Bosland, P. 2019. Wild Chile Pepper (*Capsicum* L.) of North America. In: Greene S., Williams K., Khoury C., Kantar M., Marek L. (eds) North American Crop Wild Relatives. Springer, Cham, (2): 225-242.
- Barchenger, D., Naresh, P. and Kumar, S. 2019. Genetic Resources of *Capsicum*. In: Ramchiary, N., Kole C. (eds) The *Capsicum* Genome. Compendium of Plant Genomes. Springer, Cham, p. 9-23.
- Costa, G., Da Silva, B., Lopes, A., Carvalho, L. and Gomes, R. 2019. Selection of pepper accessions with ornamental potential. Rev. Caatinga, 32(2): 566 574.
- Di Rienzo, J., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M. and Robledo, C. 2017. InfoStat software estadistico versión estudiantil. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.
- **Duran, F. 2013.** Cultivo de pimientos, chiles y ajíes. Primera edición, Grupo Latino, Bogotá, 339p.
- **Esbaugh, W. 1993.** Peppers: history and exploitation of a Serendipitous new crop Discovery. pp. 132-139. In: Janick, J. & Simon, J. (Eds.). New Crops. 1th Ed. Wiley, New York.
- **FAO. 2010.** The Second Report on the State of the World's: Plant Genetic Resources for Food and Agriculture. Rome, Italy. 399p.
- FAOSTAT. 2019. Datos sobre alimentación y agricultura: área cosecha, producción y rendimientos de chiles, pimientos picantes, pimientos (verdes) a nivel mundial 2017. En FAOSTA http://www.fao.org/faostat/es/#home
- Franco, T. e Hidalgo, R. 2003. Análisis estadístico de datos de caracterización morfológica de recursos fitogenéticos. 1a ed. IPGRI. Cali, pp. 40-84.

- Guzmán, F., Moore, S., De Vicente, C. and Jahn, M. 2019. Microsatellites to enhance characterization, conservation and breeding value of *Capsicum* germplasm. Genet Resour Crop Evol. doi.org/10.1007/s10722-019-00801-w
- Gomes, G., Baba, V., Santos, O., Sudré, C., Bento, C., Rodrigues, R. and Gonçalves, L. 2019. Combinations of distance measures and clustering algorithms in pepper germplasm characterization. Horticultura Brasileira 37: 172-179
- Hidalgo, R. y Vallejo, F. 2014. Bases para el estudio de los recursos genéticos de especies cultivadas. 1a Ed. Universidad Nacional de Colombia sede Palmira. Cali. 286p.
- **IPGRI, AVRDC. y CATIE. 1995.** Descriptores para *Capsicum* spp. 1a ed. IPGRI, AVRDC y CATIE. Roma, Italia. 47 p.
- Jesus, R., Santos, G., Piccin, A., Balsalobre, T., Sala, F. and Carneiro, M. 2019. Characterization of pepper accessions using molecular markers linked to pungency and SSR. Horticultura Brasileira 37: 152-160.
- Junior e Silva, W., Carvalho, S. and Duarte, J. 2013. Identification of minimum descriptors for characterization of *Capsicum* spp. germplasm. Horticultura Brasileira 31: 190-202.
- Lang, Y., Yanagawa, S., Sasanuma, T. and Sasakuma, T. 2004. Orange fruit color in Capsicum due to deletion of Capsanthin capsorubin synthesis gene. Breeding Science 54: 33-39.
- Marame, F., Dessalegne, C., Fininsa, C. and Sigvald, R. 2009. Heterosis and heritability in crosses among Asian and Ethiopian parents of hot pepper genotypes. Euphytica 168: 235-247.

- Medina, C., Lobo, M. y Farley, A. 2006. Variabilidad fenotípica en poblaciones de ají y pimentón de la colección colombiana del género *Capsicum*. Revista Corpoica Ciencia y Tecnología Agropecuaria 7(2): 25-39.
- Mendes, M., Santos, M., Cameron, L., Ferreira, M. and Gonçalves, E. 2019. Characterization of pepper (*Capsicum baccatum*) - A potential functional ingredient. LWT-Food Science and Technology, 112: 1-9.
- MINCIT. 2013. Plan de negocios de ají: Programa de transformación productiva. En: MINCIT. https://www.colombiaproductiva.com/ptp-capacita/publicaciones/sectoriales/publicaciones-frutas-y-sus-derivados/plan-de-negocios-de-aji-2013
- Nicolaï, M., Cantet, M., Lefebvre, V., Sage-Palloix, A.M. and Palloix, A. 2013. Genotyping a large collection of pepper (*Capsicum* spp.) with SSR loci brings new evidence for the wild origin of cultivated C. *annuum* and the structuring of genetic diversity by human selection of cultivar types. Genet. Resour. Crop Evol., 60: 2375-2390.
- Occhiuto, P., Peralta, I., Asprelli, P. y Galmarini, C. 2014. Caracterización del germoplasma de *Capsicum* recolectado en el noreste de Argentina basado en rasgos morfológicos y de calidad. Agriscientia 31(2): 63-73.
- Osawaru, M., Ogwu, M. and Aiwansoba, R. 2015. Hierarchical Approaches to the Analysis of Genetic Diversity in Plants: A Systematic Overview. In: University of Mauritius Research Journal. https://www.ajol.info/index.php/umrj/article/view/122070/111548
- Paran, I. and Van Der Knaap, E. 2007. Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J. Exp. Bot., 58: 3841-3852.

- Pérez-Gálvez, A., Hornero-Méndez, D. and Mínguez-Mosquera, M. 2004. Changes in the carotenoid metabolism in *Capsicum* fruits during application of modelized slow dry in process for paprika production. Journal of Agricultural and Food Chemistry 52(3): 518-522.
- **Pickersgill, B. 1997.** Genetic resources and breeding of *Capsicum* spp. Euphytica 96: 129–133. doi.org/10.1023/A:1002913228101
- Pinto, M., Correa, E., Páez, A., Guzmán, N. y Baquero, C. 2013. Modelo productivo de ají topito (*Capsicum* spp.) para la región Caribe. 1a ed. Corpoica, Bogotá. 272 p.
- Rahevar, P., Patel, J., Kumar, S. and Acharya, R. 2019. Morphological, biochemical and molecular characterization for genetic variability analysis of *Capsicum annuum*. Vegetos, 32:131–141.
- Srivastava, A. and Mangal, M. 2019. Capsicum Breeding: History and Development. In: Ramchiary, N., Kole C. (eds) The Capsicum Genome. Compendium of Plant Genomes. Springer, Cham, p. 25-55.
- Sudré, C., Gonçalves, L., Rodrigues, R., Amaral, A., Riva-Souza, E. and Bento, S. 2010. Genetic variability in domesticated *Capsicum* spp. as assessed by morphological and agronomic data in mixed statistical analysis. Genetics and Molecular Research 9(1): 283-294.

- Tang, H., Sezen, U. and Paterson, A. 2010. Domestication and plant genomes. Curr. Opin. Plant Biol., 13: 160-166.
- Vallejo, F. y Estrada, E. 2013. Mejoramiento genético de plantas. 2a Ed. Universidad Nacional de Colombia sede Palmira. Cali. 454p.
- Villota-Cerón, D., Bonilla, M., Carmen, H., Jaramillo, J. y García, M. 2012.
 Caracterización morfológica de introducciones de *Capsicum* spp. existentes en el Banco de Germoplasma activo de Corpoica C.I. Palmira, Colombia. Acta Agronómica 61(1): 16-26.
- Votava, E., Nabhan, G. and Bosland, P. 2002. Genetic diversity and similarity revealed via molecular analysis among and within an in situ population and ex situ accessions of chiltepín (*Capsicum annuum* var. glabriusculum). Conservation Genetics 3: 123-129.
- Votava, E., Baral, J. and Bosland, P. 2005. Genetic diversity of chile (*Capsicum annuum* var. *annuum* L) landraces from Northern New Mexico, Colorado and Mexico. Economic Botany 59(1): 8-17.