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RESUMEN

La caña flecha Gynerium sagitatum Aubl. (Poaceae) es 
una especie de gran importancia ambiental, cultural 
y económica para ciertas comunidades indígenas del 
Norte de Colombia, empleando su fibra en la fabricación 
apreciables artesanías. La cosecha de la planta y la no 
reposición de esta, viene contribuyendo en la disminución 
de poblaciones naturales de la esta especie. La 
micropropagación ha emergido como una de las la única 
posibilidades de producir de forma eficiente material 
vegetal para el establecimiento de cultivos y restaurar zonas 
afectadas. Con el fin de mejorar la eficiencia económica 
del protocolo de micropropagación, estructuras del tipo 
rizomas fueron inducidas in vitro a partir de explantes 
consistentes de plantas stablecidas in vitro bajo tres 
niveles de sacarosa, cuatro de benzilaminopurina – BAP 
y cuatro de ácido abscísico – ABA en MS con (en mg 
L-1) myo-inositol (100), tiamine HCL (0,4) y solidificados 
con Phytagel® (3.000). Los tratamientos (48) fueron 
distribuidos con un diseño completamente al azar con 
seis repeticiones por tratamiento. Los cultivos fueron 
mantenidos durante ocho semanas a 25 °C con 12 h de 
fotoperíodo (40 μmol fotones m-2 s-1) suministrada con 
lámparas de luz fría fluorescente. Diferencias estadísticas 
se observaron con respecto al número de rizomas 
formados y longitud de los rizomas como efecto de la 
interacción de los tres factores. La recuperación de las 
plantas ex vitro ocurrió en mayor número (6,0) cuando 
los rizomas se desarrollaron en medios suplidos con 
263000 µM de sacarosa combinado con 4,44 y 8,88 µM 
de Benzilaminopurina – BAP. Los resultados evidencian 
la posibilidad de inducir in vitro rizomes de caña flecha 
para ser utilizados en conservación y propagación de esta 
especie.

Palabras clave: Caña flecha, micropropagación, in vitro, 
formación de rizomas, RCV.

ABSTRACT

Gynerium sagitatum Aubl. (Poaceae) is an important 
environmental, cultural and economic species for 
aboriginal communities in Northern Colombia, in which 
the centrale central nerve is used to make precious 
craftsmanship products. The massive use of the plant 
with no restoration has dangerously decreased natural 
populations. Micropropagation has emerged as a way 
to efficiently produce planting material for cropping and 
restoration of affected areas. To improve cost efficiency of 
the micropropagation protocol, in vitro rhizome structures 
were induced using in vitro-maintained plants as 
explants under three quantities of sucrose, four of benzyl 
aminopurine - BAP and four of abscisic acid - ABA supplied 
in MS with (in mg L-1) myo-inositol (100), thiamine HCL 
(0.4), and solidified with Phytagel® (3.000). Treatments 
(48) were distributed using a complete randomized design 
with six replicates per treatment. Cultures were stored 
during eight weeks at 25 °C with 12 h photoperiod (40 
μmol photons m-2 s-1) provided by with cold fluorescent 
lamps. Statistical differences were observed with respect 
to number of rhizomes and rhizome length as a result of 
three factor interaction. Ex vitro plantlet recovery occurred 
at highest percentage from rhizomes developed in media 
supplied with sucrose at 263000 µM combined with 
4.44 and 8.88 µM BAP. Data evidenced the possibility 
of inducing in vitro rhizome growth from arrow cane 
explants to use them as a way for propagation and plant 
conservation.

Key words: Arrow cane, micropropagation, in vitro, 
rhizome formation, PGR.
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INTRODUCCIÓN

Habitat is always associated with low 
wetlands and water strain where favors shore 
protection and reduce erosion habitat is 
always associated with low wetlands and 
water strain where favors shore protection and 
reduce erosion. Plants are used by Indians 
communities for house construction, arrows 
to haunt and fish, animal feeding from leaf 
tissue and as medicinal products; flavonoids 
and isoflavonoids such as (2R,3R)-2,3-trans-
7,4’-dimethoxydihydroflavonol,(2R,3S,4S)-
2,3-trans-3,4-cis-7,4’-dimethoxy-3,4flav-
andiol,6-hydroxy-7,4’-dimethoxyflavone,6,7,4’-
trimethoxyflavone,ferreirin,dihydrocajanin, 
dalbergioidin, dihydrobiochanin A and 
biochanin has been isolated from different 
organs of the plant (Benavides et al. 2007). 
Studies reported the use of G. sagitatum plants 
as a mechanism to detoxify soils contaminated 
with Hg, Pb, Cr and Cd via phytoremediation 
of landfill leachate (Ortega-Ortega et al. 2011; 
Madera-Parra et al. 2015 a,b). 

G. sagitatum plants are canes with up to 10 m 
length stems and 2-8 cm diameter. Leaves are 
linear cauline, leaf blades up to 2 m length and 
8 cm wide with scabrous margins. Inflorescence 
is a 1-1.5 m long panicle with 3 mm dioecious 
flowers in spikelet and 1 mm long brown 
seeds. Stems grow from rhizomes that develop 
horizontally up to 10 m from the main stem; 
a single stem can hold up to 200 leaves in a 
life cycle that ends when flowers emerge and 
seed. Propagation occurs by sexual and clonal 
way; however, under local conditions seeds are 
highly inviable; therefore, clonal propagation 
by rhizome originated shoots is the main 
propagation method in natural conditions; 
rhizomes grow developing an underground 
stem net that work as propagation system into 
new territories (Aramendiz et al. 2005; Clayton 
et al. 2015). In Colombia, central nerve of G. 

sagitatum leaves are the main fiber source for 
traditional Colombian craftsmanship made 
by Zenu communities in the North Caribbean 
planes since pre Columbian times, perpetuating 
legacy and cultural aboriginal traditions.

Production of large quantities of clonal 
planting material had been a main constrain for 
commercial cultivation of arrow cane plants; 
fiber extraction from natural population is 
endangering the species and sustainability of 
the craftsmanship activity along with negative 
impacts on the environment (Aramendiz et al. 
2005). Micropropagation is a clonal propagation 
method used to produce large quantities of 
disease free planting material in short periods 
of time (Pati et al. 2006; Kumar et al. 2015). A 
micropropagation protocol to clonally propagate 
G. sagitatum using explants with pre-existing 
meristem have been developed and is currently 
used for massive plant production (Suárez et al. 
2009; Pastrana y Suárez 2009). Lately, a double 
phase medium strategy has been implemented 
as a way to increase cost efficiency and plant 
quality of G. sagitatum micropropagated plants 
(López 2013). In vitro developing of modified 
stems such as tubers and rhizomes has been 
reported as a way for plant micropropagation 
and germplasm conservation in several plant 
species (Rayirath et al. 2011; Olivier et al. 
2012; Muñiz-García et al. 2014; Badr et al. 
2015). Hormone products such as ABA, BAP 
and increased sugar supply in the medium 
have been reported as elicitors for in vitro 
tuber and rhizome formation (Lema-Ruminska 
2013; Ncube et al. 2014; Wang et al. 2015). G. 
sagitatum rhizome formation occurs naturally 
in the field; however, the in vitro induction and 
development of rhizome structures as a way for 
plant micropropagation and plantlet recovery 
is unknown. In the present research, combined 
ABA, BAP and sugar treatments on in vitro 
G. sagitatum rhizome formation and plantlet 
recovery were evaluated.
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MATERIALS AND METHODS

Plant material was obtained from in vitro 
cultured arrow cane plants cv “Criolla”. Plants 
were subcultured every four weeks, for more 
than a year, into fresh semisolid multiplication 
medium consisting of MS (Murashige y Skoog 
1962) supplied with (in mg L-1) myo-inositol 
(100), sucrose (30.000), thiamine HCL (0.4), 
benzilaminopurine (BAP) (0.5) and solidified 
with Phytagel® (3.000) (Sigma Co.). Culture 
conditions were 25 °C with 12 h photoperiod 
(40 μmol photons m-2s-1) provided by with cold 
fluorescent lamps.

The pH of all media was adjusted to 5.7-5.8 
prior to addition of gelling agent. Aliquots of 
30 ml were dispensed in 250 ml glass flaks and 
covered with heavy duty aluminum foil. Media 
were sterilized in an Sterilof® autoclave (Model 
90/1PGRgPr) at 120 °C and 1.2 PSI during 15 
min.

Three stem clusters obtained from in vitro 
maintained plants were established in semisolid 
MS with in (mg L-1) myo-inositol (100), thiamine 
HCL (0.4) and solidified with Phytagel® 
(3.000) (Sigma Co.), and additionally supplied 
independently with three levels of sucrose 
(87000, 175000 y 263000 µM) combined with 
five levels of abscisic acid (ABA) (0.0; 1.89; 3.78 
y 7.77 µM) and five level of BAP (0.0; 2.22; 4.44 
y 8.88 µM). Cultures were established into 250 
ml glass flasks with 30 ml of medium. Flasks 
were covered with two-layers of heavy duty 
aluminum foil, sealed with Nescofilm® and 
maintained at 25 °C with 12 hour photoperiod 
(40 μmol photons m-2 s-1) provided by withe 
cold fluorescent lamps. After eight weeks, every 
culture was taken from the flask inside the 
laminar flow hood and dissected using a SZX7 
Olympus® microscope to register the number 
of developed structures, the type of structure 
developed and length of each structure.

A three-factor (sucrose, ABA and BAP) 
experiment was designed with 48 treatments 
and 10 replicates per treatment for a total of 480 
experimental units. Samples were distributed 
with a complete randomized design based on 
the model Yjijkl = μ + �i + βj + ƴk + (�β)ij + (�ƴ)

ik + (βƴ)jk + (�βƴ)ijk + εijkl; were μ was the mean, 
�βƴ were the levels of sucrose, BAP and ABA 
and ε was the experimental error. Data were 
analyzed with an ANOVA (α = 0.05).

Vegetative structures grown from explant from 
the different treatments were transferred into 72-
plug containers filled with peat as substrate. The 
containers were placed in a shade house with 
20% light penetration and sprinkle irrigation 
with a frequency of three-2 minutes irrigation 
a day. Four weeks after transferring to ex vitro 
conditions, the number of plants was recorded 
and percentage of plantlet recovery calculated.  

RESULTS AND DISCUSSION

Normal plants consisting of 2-3 stem clusters 
from a single growth point developed from 
explants cultured in medium used as control 
treatment (Figure 1a). In contrast, differentiated 
rhizomes were observed growing from explants 
cultured in treatments supplied with high 
sucrose content (263000 µM) (Figure 1b) while 
no rhizome structures were observed growing 
from explants cultured, particularly but instead 
leafy-like growth was observed in treatments 
supplied with lower levels of sugar (87 mM) 
and BAP (0.0 and 2.22 µm) (Figure 1c).

A rhizome is a specialized storage plant stem 
in which the main axis grows horizontally at 
or just below the ground surface. The structure 
has nodes and internodes with a leaf-like 
sheath attached at each node, adventitious 
roots and lateral shoots grow next to the node, 
and upright - growing shoots emerge either 
from the terminal tip or lateral nodes allowing 
the parent plant to clonally propagate (Li 
et al. 2014). In the present study, structures 

Suárez et al. - In vitro rhizome in arrow cane
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emerging from the explants cultured in media 
with several sucrose/BAP/ABA combinations 
were consistent with rhizome characteristics 
showing lateral growth and emerging shoots at 
different points although no root formation was 
observed (Figure 1b). This response is consistent 
with the presence in the medium of BAP and 
ABA and their effects, specifically for BAP, on 
lateral shoot growth promotion from axillary 
meristems and disruption of adventitious lateral 
root development, by accumulation, from the 
medium supply, of high levels of citokinins in 
cells of the root meristem such as lateral root 
cap, columnella initials and quiescent center 
cells resulting in an antagonistic interaction 
with endogenous auxin repressing its effects 
(Chan et al. 2013; Antoniadi et al. 2015; Bielach 
et al. 2012 a,b).

The ANOVA allowed to detect that sucrose 
(Pr= <0.0001), BAP (Pr= <0.0001), ABA (Pr= 
<0.0001) levels, and the interaction sucrose/
BAP/ABA (Pr= <0.0011) significantly affected 
the number of rhizome structures formed from 
explants cultured in the applied treatments 
(Table 1). The collected data shows that the 
highest number of rhizomes developed when 
explants were cultured in media supplied with 
263000 µM sucrose combined with 2.22 or 
4.44 µM BAP and 0 or 1.89 µM ABA. Complete 
absence of ABA and BAP, or combination of 
the highest amount of both PGRs resulted in 
no rhizome formation. Explants cultured in 
medium supplied with BAP at 2.22 µM formed 

structures regardless of the amount of sucrose 
or ABA (Table 1).

Rhizomes in nature are modified underground 
stems used by plants to store starches and 
proteins, and allow herbaceous perennial 
plants to survive seasonally under adverse 
environmental conditions. Development 
of storage organs such as tubers has been 
extensively studied in species like Solanum 
tuberosum reporting that photoperiod, 
phytochrome regulation, flowering and starch 
accumulation genes, GA and ABA hormones, 
and several transcriptions factors are involved 
in tuber formation. Instead, rhizome is a 
complex poorly understood developmental 
process that depends on expression of genes 
controlled environmentally and endogenous 
factors (Cheng et al. 2013; Fischer et al. 2008; 
Abelenda et al. 2011; Tjaden et al. 1998; Kuipers 
et al. 1994). Recent studies have reported that 
like for tuber formation genes involved in 
photoperiod pathway (PHYB, CO, GI and FT), 
starch biosynthesis (SUS, UGPase, GBSS and 
SSS) and hormone signal transduction (GA, 
ABA, CTK, auxin, ethylene and JA) are related 
to rhizome formation and development (Yang 
et al. 2015). Additionally, studies on Sorghum 
spp and Miscanthus spp have identified 
rhizome enriched genes, supporting the gene-
controlled developmental process of rhizome 
development (Jang et al. 2009; Kim et al 2014). 
On the other hand, sucrose has been observed 
to increase storage organ formation and size 

Table 1. Mean number of in vitro Gynerium sagitatum Aubl. rhizome structures developed in media supplied 
with different sucrose, Benzil Aminopurine (BAP) and Abscisic Acid (ABA) amounts.

Sucrose (87000 µM)
BAP (µM)

Sucrose (165000 µM)
BAP (µM)

Sucrose (263000 µM)
BAP (µM)

ABA
(µM)

0.00
1.89
3.78
7.57

2.20
2.17
2.33
0.17
1.33

4.44
0.00
3.30
0.00
0.00

8.88
0.17
0.00
0.00
0.00

0.00
0.00
0.00
0.00
1.00

2.20
1.00
1.17
2.17
2.67

4.44
2.00
2.50
1.00
0.33

8.88
4.33
3.17
0.00
0.00

0.00
0.00
0.00
0.50
1.00

2.20
6.00
4.00
1.67
2.50

4.44
4.83
4.67
3.67
0.50

8.88
2.50
3.67
0.00
0.00

0.00
0.00
0.00
0.00
0.00

Effects (α = 0.05): Sucrose Pr< 0.0001, BAP Pr< 0.0001, ABA Pr< 0.0001, sucrose x BAP x ABA Pr< 0.0001.
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in several species. In vitro formed Curcuma 
longa rhizomes were more numerous and 
accumulated a higher dry-mass when cultured 
in medium with increased sucrose supply (El-
Hawaz et al. 2015). In vitro cultures of Dioscorea 
rotunada and D. cayenensis developed more 
tubers when cultured in medium with 233000 
µM sucrose compared to those cultured with 
87000 µM sucrose (Olivier et al. 2012; Dai et 
al. 2014). In the present research, the presence 
of BAP showed to be necessary for rhizome 
formation and increasing the sucrose level in 
the medium resulted in a higher frequency of 
rhizome formation; these results are consistent 
with previous in vitro rhizome formation 
reports.

The results of the ANOVA evidenced that 
sucrose, BAP, ABA and the interaction Sucrose/
BAP/ABA statistically affected the size of 
rhizomes emerging from the explants (Table 
2). Explants cultured in medium supplied 
with 263000 µM sucrose and 4.44 µM BAP 
induced the longest structures, followed by 
those formed from explants cultured in 175000 
µM sucrose, 2.22 µM BAP and 7.57 µM ABA. 
The smallest structures occurred when explants 
were cultured in 87000 µM sucrose combined 
with 2.22 µM BAP and 3.78 µM ABA.

Starch accumulation has been associated 
with storage organ enlargement and swelling. 
In potato, tuber growth was found to be in 
coordination with accumulation of starch 

and in lotus rhizome enlargement is highly 
associated with starch biosynthesis (Abelenda 
et al. 2011). Starch synthesis initiates with 
sucrose conversion to fructose and DUPG 
by the gene SUS; the expression of this gene 
has been correlated with both potato tuber 
and lotus rhizome growth (Ogawa et al. 
2009). Additionally, AGPase catalyzes the 
formation of ADP-glucose from G1P in plastids 
(chromoplasts, chloroplasts and amylopasts) 
of all starch-synthesizing tissues (Tetlow et 
al. 2004); lotus AGPases genes NNU_07115 
and NNU_25036 were found associated with 
rhizome growth (Yang et al. 2015). In addition 
to carbohydrate accumulation, phytohormones 
such as GA, BAP, ABA, JA and ethylene have 
coordination with accumulation of starch been 
reported to play an important role in storage 
organs formation (Fernie And Willmitzer 
2001). ABA has been found to promote tuber 
formation and reduce stolon length (Guo et 
al. 2010; Muñiz-Garcia et al. 2014); however, 
deficient ABA mutants showed ability to form 
tubers, indicating that ABA is not essential for 
tuber formation. Instead, ABA seems to play a 
role as facilitator of other hormone functions 
and sugar accumulation (Rook et al. 2006; 
Sharma et al. 2004; Hu et al. 2012). Recently, 
auxin, ethylene, cytokinins and jasmonic acid 
related genes were found associated with 
rhizome formation and enlargement (Yang et 
al. 2015). In the present research, the collected 
data showed that increasing sucrose resulted in 
longer G. sagitatum rhizomes.

Table 2. Length mean (mm) of in vitro Gynerium sagitatum Aubl. rhizome structuresdeveloped in media 
supplied with different sucrose, Benzil Aminopurine (BAP) and Abscisic Acid (ABA) amounts.

Sucrose (87000 µM)
BAP (µM)

Sucrose (165000 µM)
BAP (µM)

Sucrose (263000 µM)
BAP (µM)

ABA
(µM)

0.00
1.89
3.78
7.57

2.20
4.78
4.45
0.36
3.02

4.44
0.00
2.38
0.00
0.00

8.88
0.52
0.00
0.00
0.00

0.00
0.00
0.00
0.00
1.00

2.20
2.67
2.82
3.70
5.38

4.44
3.28
4.13
2.75
0.40

8.88
3.15
1.90
0.00
0.00

0.00
0.00
0.00
0.50
1.00

2.20
3.90
2.98
2.40
4.25

4.44
6.48
3.31
5.33
0.70

8.88
1.45
3.58
0.00
0.00

Effects (α = 0.05): Sucrose Pr< 0.0001, BAP Pr< 0.0001, ABA Pr< 0.0001, sucrose x BAP x ABA Pr< 0.0001.

0.00
0.00
0.00
0.00
1.00

Suárez et al. - In vitro rhizome in arrow cane
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Plants developed only from in vitro grown 
rhizomes in media supplied with 263000 µM 
sucrose with 4.4 µM BAP at all ABA levels and 
with 8.8 µM BAP at 0 and 1.89 µM ABA. Only 
rhizomes cultured in 4.44 µM BAP were able 
to regenerate plants at 165000 µM sucrose. 
Structures formed from explants cultured in 
medium supplied with 263000 µM sucrose  
combined with 4.44 µM BAP allowed the highest 
number of plants recovered; while those cultured 
in medium with 165000 µM sucrose combined 
with 4.44 µM BAP and 1.89 µM ABA resulted 
in the lowest number of plantlet recovered. The 
collected data showed that increased sucrose 
levels in the medium resulted in rhizomes with 
increased capacity for plant recovery (Table 3).

In vitro propagated plants and organs grown 
under low light radiation (>60 µmol m-1 s-1) 
are unable to activate photosynthesis, and 
therefore photoautotrophic nutrition is based 
on sugar supplied on the medium with starch 
accumulation occurring basically in plastids 
(Shin et al. 2009). Chloroplasts from in vitro 
grown tissues are underdeveloped and electron 
flow in the thylakoid membrane does not occur 
becoming incapable to convert light energy 
into chemical energy; additionally, stomatal 
conductance are low when plants are exposed 
to low light intensity (Yamori et al. 2010; Yamori 
et al. 2015; Huang et al. 2015). Since plants and 
organ are not photosynthetically active, organs 
transferred ex vitro conditions must have plenty 
of energy reserved to support new structures 
formation (leaves and roots) (Mollo et al. 2011; 
Badr et al. 2015). Because larger organs have 

Table 3. Percentage of plantlet recovered from in 
vitro-developed rhizomes of G. sagitatum.

ABA
(µM)

0.00
1.89
3.78
7.57

2.20
*
*
*
*

4.44
*

13.00
*
*

8.88
*
*
*
*

0.00
*
*
*
*

Sucrose (165000 µM)
Benzil Aminopurine (µM)

Sucrose (263000 µM)
Benzil Aminopurine (µM)

0.00
*
*
*
*

2.20
*
*
*
*

4.44
38.00
21.00
18.00
30.00

8.88
33.00
36.00

*
*

*No rhizome transferred to ex vitro conditions.

more stored reserves (starch) they have more 
opportunity to successfully support growth of 
new emerging plants when transferred to ex 
vitro conditions.

CONCLUSSIONS

Rhizome structures from in vitro cultivated 
Gynerium sagitatum Aubl. explants is viable 
and potentially used for plant propagation and 
in vitro conservation.

Rhizome production from in vitro cultured 
Gynerium sagitatum Aubl. plants is statistically 
affected by sucrose/BAP/ABA interaction in the 
medium.

Combined supply of 26300 M sucrose with 
4.44 BAP in the culture medium resulted in 
most numerous larger rhizomes and higher 
survival rates for ex vitro acclimatized Gynerium 
sagitatum Aubl. plants.
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