Skip to main navigation menu Skip to main content Skip to site footer

Analysis of benefic entomofauna in transgenic and conventional corn crops, Córdoba-Colombia

Analisis de la entomofauna benéfica en cultivos de maíz transgénico y convencional, Córdoba-Colombia



How to Cite
Sanchez, M. L., Linares, J. C., Fernández Herrera, C. R., & Pérez García, K. D. (2018). Analysis of benefic entomofauna in transgenic and conventional corn crops, Córdoba-Colombia. Sour Topics, 23(2), 121-130. https://doi.org/10.21897/rta.v23i2.1296

Dimensions
PlumX
Maria Luisa Sanchez
Juan Carlos Linares
Claudio Rodolfo Fernández Herrera
Karol Darío Pérez García

The adoption of genetically modified crops (GMOs) has led to the need to assess impacts on non-target organisms. For this, the impact of transgenic maize (Zea mays) on beneficial entomofauna was studied. Arthropods were collected in eight lots of conventional and transgenic maize using the techniques of Berlesse, Pitfall, Jama and Yellow traps. The diversity analysis was performed using the method proposed by Jost (2006) through three values q = 0, 1 and 2 and range-abundance curves were constructed. For the formation of the functional groups, a cluster analysis was performed using Ward’s hierarchical chaining method. 6,932 individuals were collected between conventional and transgenic crops, registering 102 taxa discriminated in 6 species, 42 genera and 54 families. The transgenic crop recorded the highest abundance with 51,60% and the conventional one 48,39%. The range-abundance curve does not indicate differences between the crops for the municipalities of Cereté and San Pelayo. The dendrogram showed eight (8) functional groups. When analyzing the true alpha diversity 0D, the eight (8) functional groups were obtained in both locations; The true diversity in conventional culture was 1D = 6,76 and the transgenic 1D = 6,83. For the 2D order it was 6,17 in conventional and 6,21 in transgenic; it can be concluded that in these results no significant differences were observed in relation to the three diversity profiles between conventional and transgenic crops.

Article visits 1448 | PDF visits


Downloads

Download data is not yet available.
  1. Benamú, M. 2010. Composición y estructura de la comunidad de arañas en el sistema de cultivo de soja transgénica. Tesis de Doctorado, Facultad de Ciencias Naturales y Museo, Universidad
  2. Nacional de La Plata, Argentina pp. 120.
  3. Berry, N., Wratten, S., McErlich, A. y Frampton, C. 1996. Abundance and diversity of beneficial arthropods in conventional and “organic” carrot crops in New Zealand. New Zealand Journal of Crop and Horticultural Science 24: 307-313.
  4. Borror, D. and White, R. 1998. A field guide to insects: America north of Mexico (Vol. 19). Houghton Mifflin Harcourt.
  5. Casanoves, F., Pla, L. y Di Renzo, J. 2011. Valoración y análisis de la diversidad funcional y su relación con los servicios ecosistémicos. Turrialba, CR. CATIE. 84pp.
  6. Chao, C. and Jost, L. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 9:2533-2547.
  7. Chaves, D., Martins, S., Maruccib R., De Carvalho, A., Matoso, M. and Magid, J. 2016. Does Bt maize cultivation affect the non-target insect community in the agro ecosystem?. Revista Brasileira de Entomologia 60; pp. 82–93.
  8. Conner, A., Glare, T., Nap, J. 2003. The release of genetically modified crops into the environment - Part II. Overview of ecological risk assessment. The Plant Journal 33: 19–46.
  9. Corpoica. 2012. Aproximación metodológica del proyecto Lac biosafety para evaluar efectos sobre especies no objetivo: Caso del maíz Bt. pp 94.
  10. Dively, G. 2005. Impact of transgenic VIP3A Cry1Ab Lepidopteran-resistant fieldcorn on the nontarget arthropod community.
  11. Environ. Entomol. 34, 1267–1291.
  12. Feinsinger, P. 2003. El diseño de estudios de campo para la
  13. conservación de la biodiversidad. FAN (Fundación Amigos de la Naturaleza), Santa Cruz de la Sierra, Bolivia. 242 p.
  14. Fernández, F. y Sharkey, J. (eds.). 2006. Introducción a los Hymenoptera de la Región Neotropical. Sociedad Colombiana de
  15. Entomología y Universidad Nacional de Colombia, Bogotá D. C., 894 pp.
  16. Greenstone, M. 1999. Spider predation: How and why we study it. Journal Arachnology. 27: 333-342.
  17. Hilbeck, A., Moar, W., Pusztai-Carey, M., Filippini, A. and Bigler, F. 1999. Prey-mediated effects of Cry1Ab toxin and protoxin and Cry2A protoxin on the predator Chrysoperla carnea. Entomol. Exp. Appl. 91: 305–316.
  18. Jost, L. 2006. Entropy and diversity. Oikos, 113:363-375.
  19. Lobos, E. 2003. Evaluación de la fauna benéfica en cultivos de algodón convencional y transgénicos con expresión de la toxina del Bacillus thuringiensis. INDEAS-Facultad de Agronomia y Agroindustrias -UNSE. Av. Belgrano 1912- 4200 Santiago del Estero- Argentina.
  20. Magurran, A. 1998. Ecological biodiversity and its measurement. Princenton University Press, New Jersey. 179 p.
  21. Marvier, M., McCreedy, C., Regetz, J. and Kareiva, P. 2007. A meta-analysis of effects of Bt cotton and maize on nontarget
  22. invertebrates. Science 316: 1475–1477.
  23. Meissle, M. and Romeis, J. 2012. No accumulation of Bt protein in Phylloneta impressa (Araneae: Theridiidae) and other arthropods in Bt maize. Environ. Entomol. 41,1037–1042.
  24. Moreno, C., Barragán, F., Pineda, E. and Pavón, N. 2011. Reanalyzing alpha diversity: alternatives to understand and compare information about ecological communities.
  25. Nájera, R. y Souza, B. 2010. “Insectos benéficos. Guía para su identificación”. Edición del Instituto Nacional de Investigaciones
  26. Forestales, Agrícolas y Pecuarias (INIFAP) y la Universidad Federal de Lavras (UFLA), Minas Gerais, Brasil. Noviembre.
  27. Naranjo S. 2005. Long-term assessment of the effects of transgenic Bt cotton on the function of the natural enemy community. Environmental Entomology 34: 1211–1223.
  28. O’Callaghan, M., Glare, T., Burgess, E. y Malone, L. 2005. Effects of
  29. plantsgenetically modified for insect resistance on non-target organisms. Annu. Rev.Entomol. 50, 271–292.
  30. Pérez, G., Tamajón, R., Aldebis, H. y Vargas O. 2009. Comunidad de arañas en cultivos de algodón ecológico en el sur de España.
  31. Rev. Colom. Entomol. 35: 168-172.
  32. Riechert, S. and Lawrence, K. 1997. Test for predation effects of single versus multiple species of generalist predators: Spiders and their insect prey. Entomology Exp. Applic. 84: 147-155.
  33. Rohlf, F. and Sokal, R. 1981. Biometry: the principles and practices of statistics in biological research. 2nd Ed., W.H. Freeman, San Francisco. pp. 321–371
  34. Romeis, J., Meissle, M., Naranjo, S., Li, Y. and Bigler, F. 2014. The end of a myth – Bt(Cry1Ab) maize does not harm green lacewings. Front Plant Sci 5, 1–10.
  35. Schuler, T., Potting, R., Denholm, I. and Poppy, G. 1999. Parasitoid behavior andBt plants. Nature 400, 825–826.
  36. Triplehorn, C. and Johnson, N. 2005. Borror and DeLong’s Introduction to the Study of Insects. Belmont, CA: Thomson Brooks/Cole.
  37. White, J. and Andow, D. 2005. Host–parasitoid interactions in a transgeniclandscape: spatial proximity effects of host density.
  38. Environ. Entomol. 34,1493–1500.

Sistema OJS 3.4.0.3 - Metabiblioteca |