Skip to main navigation menu Skip to main content Skip to site footer

Effect of growth promoting bacteria on the fertilization of sweet potatoes (Ipomoea batatas Lam)

Efecto de bacterias promotoras del crecimiento en la fertilización de la batata (Ipomoea batatas Lam)



How to Cite
Ariza-González, A. R., Jarma-Orozco, A. de J., Pérez-Pazos, J. V., & Sánchez-López, D. B. (2019). Effect of growth promoting bacteria on the fertilization of sweet potatoes (Ipomoea batatas Lam). Sour Topics, 24(2), 147-157. https://doi.org/10.21897/rta.v24i2.2116

Dimensions
PlumX

An alternative to reduce the effect of chemical fertilization on soils and favor the growth of sweet potato crops is the incorporation of microorganisms that promote plant growth in fertilization. In the Colombian Caribbean, sweet potato is currently one of the emerging crops due to its high nutritional properties in the human diet. The objective of this study was to evaluate the effect of two bacterial strains, Pseudomonas denitrificans IBVS2 and Azotobacter vinelandii IBVS13, on the yield of sweet potato clone Tainung 66 in field conditions, in the Valle del Sinú, Córdoba, Colombia. The research was carried out during second semester of 2017, at the Turipaná-Agrosavia Research Center, using apical cuttings from the Tainung 66 clone. A randomized complete block design with a 3x2+2 factorial arrangement was implemented, physiological component, foliar and edaphic chemical analysis, yield and bromatological composition variables were evaluated. The results showed that yield and dry root mass showed significant differences with respect to the chemical control when fertilization consisted of IBVS2 strain plus 50% of chemical fertilizer, obtaining a yield of 11.32 t.ha-1 and 5,78 t.ha-respectively. These results showed that inoculation of PGPRs constitutes an alternative for sweet potatoes cultivation with positive effects when compared to complete chemical fertilization.


Article visits 1035 | PDF visits


Downloads

Download data is not yet available.
  1. AOAC (Association of Official Analytical Chemists). 2016. Official methods of analysis of AOAC International. 20th ed. AOAC Int., Gaithersburg, MD, USA
  2. Barker, A. y Pilbeam, D. 2015. Handbook of Plant Nutrition. Florida, US: CRC Press. p 613.
  3. Buono, N. y Ulla, E. 2016. Efectos de la inoculación con bacterias solubilizadoras de fosfato en tabaco (Nicotiana tabacum L.) y pimiento (Capsicum annuum L.) en condiciones controladas. Revista agronómica del noroeste argentino, 36(2): 45-54.
  4. Castillo, C., Huenchuleo, M., Michaud, A. y Solano, J. 2016. Micorrización en un cultivo de papa adicionado del biofertilizante Twin-N establecido en un Andisol de la Región de La Araucanía. Idesia (Arica), 34(1): 39-45.
  5. Cisneros-Rojas, C., Sánchez-de Prager, M., y Menjivar-Flores, J. 2017. Efecto de bacterias solubilizadoras de fosfatos sobre el desarrollo de plántulas de café. Agronomía Mesoamericana, 28(1): 149-158.
  6. Dierksmeier, G. 2007. Origen y desarrollo del análisis de residuos de plaguicidas en Cuba. Fitosanidad, 11(3): 87-90.
  7. Espinosa, B., Moreno, A., Cano, P., Álvarez, V., Sáenz, J., Sánchez, H. y González, G. 2017. Inoculación de rizobacterias promotoras del crecimiento vegetal en tomate (Solanum lycopersicum L.) cv. afrodita en invernadero. Terra Latinoamericana, 35(2): 169-178.
  8. Farzana, Y. and Radizah, O. 2005. Influence of Rhizobacterial Inoculation on Growth of the Sweetpotato Cultivar. Journal of Biological Sciences, 1(3): 176-179.
  9. Ferrera-Cerrato, R. y Alarcón, A. 2004. Biotecnología de los hongos micorrízicos arbusculares. In: Memoria Simposio de Biofertilización (eds). Río Bravo, Tampa, México. p 1-9.
  10. Flórez, D., Contreras, C. y Uribe, C. 2016. Perspectivas Tecnológica y comercial para el cultivo de batata en Colombia. Mosquera: Centro de publicación Corporación Colombiana de Investigación Agropecuaria (CORPOICA). p 70.
  11. FAOSTAT-Organización para las naciones unidad para alimentación y agricultura FAO. 2017. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Statistics databases. Base de datos disponibles http://www.fao.org/faostat/en/?#data/QC/visualize. [mayo 27 mayo 2019].
  12. García, A., Pérez, M., Méndez, A. y Madriz, P. 2016. Caracterización postcosecha y composición química de la batata (Ipomoea batatas (L.) Lam.) variedad Topera. Agronomía Mesoamericana, 27(2): 287-300.
  13. González, A., Alvis, A. y Arrázola, G. 2015. Efecto del Recubrimiento Comestible en las Propiedades de Trozos de Batata (Ipomoea batatas Lam) Fritos por Inmersión: Parte 1: Textura. Información tecnológica, 26(1): 95-102.
  14. ICONTEC (Instituto Colombiano de Normas Técnicas y Certificación). 2002. Norma técnica colombiana NTC 5122: Alimentos para animales. Determinación del contenido de fibra cruda. Método con filtrado intermedio. ICONTEC, COL
  15. Holdridge R. 1978. Ecología basada en zonas de vida. San José: Instituto Interamericano de Cooperación para la Agricultura (IICA). Capítulo 2. El diagrama de las zonas de vida. p 13-28.
  16. Huamán, A. 2002. Rendimiento de tres clones de camote (Ipomoea batatas Lam.) en cuatro niveles de fertilización nitrogenada en Tulumayo. Tesis de pregrado, Universidad Nacional Agraria de la Selva, Tingo Maria, Perú. p 99.
  17. IDEAM. 2019. Boletín agroclimático a nivel nacional (Colombia). [Fecha de consulta: mayo 29 mayo 2019]. http://www.ideam.gov.co/web/tiempo-y-clima/boletin-agroclimatico.
  18. Martí, H., Corbino, G. y Chludil, H. 2011. La batata. El redescubrimiento de un cultivo. Ciencia Hoy, 21(1): 17-23.
  19. Martín, G., Tamayo, Y., Hernández, I., Varela, M. y Da Silva, E. 2017. Cuantificación de la fijación biológica de nitrógeno en Canavalia ensiformis crecida en un suelo pardo mullido carbonatado mediante los métodos de abundancia natural de 15N y diferencia de N total. Cultivos Tropicales, 38(1): 122-130.
  20. Mujica-Pérez, Y., Medina-Carmona, A. y Rodríguez-Guerra, E. 2017. Inoculación de hongos micorrízicos arbusculares y bacterias promotoras del crecimiento vegetal en el cultivo de maní (Arachis hypogaea L.). Cultivos Tropicales, 38(2): 15-21.
  21. Ortiz, L. y Flórez, V. 2008. Comparación cuantitativa de ácido abscísico y citoquininas en la tuberización de Solanum tuberosum L. y Solanum phureja Juz. et Buk. Agronomía Colombiana, 26(1):32-38.
  22. Pedraza, C., Flórez, D. y Uribe, C. 2015. Perspectivas tecnológicas y comerciales para el cultivo de la batata (Ipomoea batatas Lam.)
  23. Pérez, J. y Sánchez, D. 2017. Caracterización y efecto de Azotobacter, Azospirillum y Pseudomonas asociadas a Ipomoea batatas del Caribe Colombiano. Revista Colombiana de Biotecnología, 19(2): 35-46.
  24. Puerta, J. 2012. Desarrollo de una mezcla base para chips de batata. Tesis de grado, Universidad Simón Bolívar, Caracas, Venezuela. p 92.
  25. Quiroga, M., Aguero, D., Zapata, R., Busilacchi, H. y Bueno, M. 2016. Activadores de crecimiento y biofertilizantes como alternativa al uso de fertilizantes químicos en cultivo de chía (Salvia hispanica L.). Energías Renovables y Medio Ambiente (ERMA). p 35.
  26. Raaijmakers, J., Paulitz, T., Steinberg, C., Alabouvette, C. and Moënne, Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and soil, 321(1-2): 341-361.
  27. Rodas, J. 2008. Efectividad de biofertilizante, sobre caracteres agronómicos y rendimiento en trigo duro variedad Jupare. Tesis pregrado, Universidad Autónoma Agraria Antonio Narro, Buenavista, México. p 49.
  28. Sánchez, D, Pérez, J., Luna, L., García, J. y Espitia, A. 2018. Evaluación de Azotobacter vinelandii y Pseudomonas denitrificans en Dioscorea rotundata en condiciones de campo. Fave. Sección ciencias agrarias, 17(1): 35-43.
  29. Sánchez López, D. B., Gómez-Vargas, R. M., Garrido Rubiano, M. F., y Bonilla Buitrago, R. R. 2012. Inoculación con bacterias promotoras de crecimiento vegetal en tomate bajo condiciones de invernadero. Revista mexicana de ciencias agrícolas, 3(7):1401-1415.
  30. Sánchez, D., Hoyos, M., Perdomo, A. y Buitrago, R. 2014a. Efecto de rizobacterias promotoras de crecimiento vegetal solubilizadoras de fosfato en Lactuca sativa cultivar White Boston. Revista Colombiana de Biotecnología, 16 (2):122- 128.
  31. Sánchez, D., Pérez, J. y Hinestroza, D. 2016. Efecto de las PGPB sobre el crecimiento Pennisetum clandestinum bajo condiciones de estrés salino. Revista Colombiana de Biotecnología, 18(1): 65-72.
  32. Sánchez, D., Pérez, J., Luna, L., García , J. y Espitia, A. 2019. Azotobacter chroococcum y Azospirillum lipoferum como bioestimulantes en cultivo de Ipomoea batatas Lam. Agronomía Mesoamericana, 30(2): 563-576.
  33. Sánchez, D., Romero, F. y Bonilla, R. 2014b. Respuesta de Physalis peruviana L. a la inoculación con bacterias solubilizadoras de fosfato. Revista mexicana de ciencias agrícolas, 5(5): 901-906.
  34. Sandaña, P., Santos, J., Orena, S. y Kalazich, J. 2012. Fertilización Nitrogenada para el cultivo de papa en la zona centro-sur de CHILE. Instituto de Investigaciones Agropecuarias (INIA), Ministerio de la Agricultura, Chile. p 4.
  35. Sangronis, E., Teixeira, P., Otero, M., Guerra, M. y Hidalgo, G. 2006. Manaca, batata y ñame: posibles sustitutos del trigo en alimentos para dos etnias del Amazonas venezolano. ALAN, 56(1): 122-128.
  36. Serrano, A., Vílchez, C., Sandino, S., Carrillo, P. y Pachón, H. 2011. Evaluación sensorial de tortas de camote (Ipomoea batatas), elaboradas con o sin hojas de camote, con niños en edad escolar en Nicaragua. Revista Perspectivas Nutricionales Humana, 13(1): 191-202.
  37. Silva, C., de Mello, R., Castellanos, L., Abreu, M. y Rosatto, L. 2016. Fuentes de fosfato asociadas a la cachaza y el biofertilizante sobre los microorganismos solubilizadores de fósforo y su contenido en el suelo. Cultivos Tropicales, 37(1): 22-27.
  38. Techeira, N., Sivolí, L., Perdomo, B., Ramírez, A. y Sosa, A. 2014. Caracterización fisicoquímica, funcional y nutricional de harinas crudas obtenidas a partir de diferentes variedades de yuca (Manihot esculenta Crantz), batata (Ipomoea batatas Lam) y ñame (Dioscorea alata), cultivadas en Venezuela. INTERCIENCIA, 39(1): 191-197.
  39. Yadav, A., Guha, M., Tharanathan, R. y Ramteke, S. 2006. Cambios en las características de las harinas de camote preparadas por las diferentes técnicas de secado. JFST, 39(1): 20-26.
  40. Yépez, L. y Estévez, N. 2014. Determinación de las características físicas y químicas del camote (Ipomea batata) de la variedad de pulpa morada. Tesis de grado, Universidad Técnica del Norte, Ecuador. p 95.

Sistema OJS 3.4.0.3 - Metabiblioteca |