Skip to main navigation menu Skip to main content Skip to site footer

Physical-chemical characterization of corn cultivated soils in the Sinu Valley, Colombia

Caracterización físico-química de los suelos dedicados al cultivo de maíz en el Valle del Sinú, Colombia



How to Cite
Cadena-Torres, J., Novoa Yánez, R. S., Grandett Martinez, L. M., Contreras Santos, J. L., & Agamez Saibis, A. (2021). Physical-chemical characterization of corn cultivated soils in the Sinu Valley, Colombia. Sour Topics, 26(1), 68-79. https://doi.org/10.21897/rta.v26i1.2584

Dimensions
PlumX

The Sinu Valley is a subregion with the largest corn planting and production area in Colombia. Corn yield in recent years have presented a stagnation, despite having agri-ecological technologies and conditions suitable for cultivation. It is  presumed that continuous soil tillage through the years has generated a high degree physical and chemical deterioration of soil characteristics. This research was carried out with the
objective of diagnosing corn cultivated soil fertility based on some physicochemical properties. Sampling was carried out in 80 farms, where corn have been continuously planted, and rotated with cotton. The results indicated that from the chemical  point of view, in general soils present an adequate fertility for crop development and productivity; however, some degree of deterioration on the physical characteristics was observed, and evidenced by variables such as apparent density, basic infiltration, and distribution of roots in the profile, mainly conditioned to the type of tillage that has been practiced. This has probably affected the root growth, free water and gas circulation, and nutrition of corn crops. A more detailed study on root distribution in the soil profile was recommended to propose strategies for soil recovery


Article visits 1370 | PDF visits


Downloads

Download data is not yet available.
  1. Agronet. 2019. Área sembrada y área cosechada del cultivo de maíz tecnificado por departamento en Colombia. http://www.agronet.gov.co/Documents/ Ma%C3%ADz%20Tecnificado.pdf
  2. Aguilar, S. 2005. Fórmulas para el cálculo de la muestra en investigaciones de salud. Salud en Tabasco 11(1-2):333-338. https://www.redalyc.org/pdf/487/48711206. pdf
  3. Ahmad, A., Fares, A., Hue, N. V., Safeeq, M., Radovich, T., Abbas, F., Ibrahim, M. 2014. Root distribution of sweet corn (Zea mays) as affected by manure types, rates and frequency of applications. Journal of Animal and Plant Sciences, 24(2), 592–599
  4. Aller, D. M., Archontoulis, S. V., Zhang, W., Sawadgo, W., Laird, D. A., Moore, K. 2018. Long term biochar effects on corn yield, soil quality and profitability in the US Midwest. Field Crops Research, 227(July), 30–40. https://doi.org/10.1016/j.fcr.2018.07.012
  5. Barrera-Violeth, JL., Cabrales-Herrera, EM., Sáenz- Narváez, EP. 2017. Respuesta del maíz híbrido 4028 a la aplicación de enmiendas orgánicas en un suelo de Córdoba – Colombia. Revista Orinoquía, 21(2):38-45
  6. Beretta-Blanco, A., Pérez, O., Carrasco-Letelier, L. 2019. Soil quality decrease over 13 years of agricultural production. Nutrient Cycling in Agroecosystems, 3, 45–55. https://doi.org/10.1007/s10705-019-09990-3
  7. Bouwer, H. 1961. A double tube method for measuring hydraulic conductivity of soil in situ above a water table. Soil Sci. Soc. Proc.,: 334-339.
  8. Burt, R. 2014. Soil survey field and laboratory methods manual. Soil Survey Investigations Report No. 51, Version 2. US Department of Agriculture, Natural Resources Conservation Service, WA, USA.
  9. Cabeza, R.A., Claassen, N. 2017. Sistemas radicales de cultivos: extensión, distribución y crecimiento. Agro Sur, 45(2), 31–45.https://doi.org/10.4206/agrosur.2017.v45n2- 04
  10. Combatt, E.M., Martínez L.Z., Palencia, M. 2008. Generación de acidez por oxidación de pirita en suelos sulfatados ácidos interiores de clima cálido. Temas Agrarios 13(1), 32. Doi: 10.21897/rta.v13i1.662
  11. Combatt-Caballero, E., Novoa-Yánez, R., Barrera- Violeth, J. L. 2012. Caracterización química de macroelementos en suelos cultivados con plátano (Musa AAB Simmonds) en el departamento de Córdoba, Colombia. Acta Agronómica, 61(2), 166-176.
  12. Contreras-Santos, JL., Martinez-Atencia, J. Cadena- Torres, J; Novoa-Yanez, RS, Tamara-Morelos, R. 2020. Una evaluación de las propiedades fisicoquímicas de suelo en sistema productivo de maíz - algodón y arroz en el Valle del Sinú en Colombia. Revista U.D.C.A Actualidad & Divulgación Científica 23(2):1-10. https://doi.org/10.31910/rudca.v23. n2.2020.1375
  13. Cremona, M. V., Enríquez, A. S. 2020. Algunas propiedades del suelo que condicionan su comportamiento : El pH y la conductividad eléctrica. Presencia, 5–8. https://repositorio.inta.gob.ar/bitstream/ handle/20.500.12123/7709/INTA_ CRPatagoniaNorte_EEABariloche_Cremona_ MV_Algunas_Propiedades_Del_Suelo_ Que_Condicionan_Su_Comportamiento. pdf?sequence=2&isAllowed=y
  14. Federación Nacional de Cultivadores de Cereales y Leguminosas – FENALCE. 2019. Indicadores Cerealistas 2019-A. Departamento Económico y Apoyo a la Comercialización. Pag. 72. https://www.fenalce.org/archivos/ indicerealista2019A.pdf
  15. Funmilayo, AY., Abenu, A. 2019. Evaluation of Soil Deterioration Index under Different Farm Management practices In Lafia Region , Nasarawa State – Nigeria. Confluence Journal of Environmental Studies, 13(1), 101–106.
  16. González, RL. 2014. Estabilidad estructural de agregados en tres sistemas de uso de suelo en el sector Venenillo, Distrito Rupa Rupa. Tesis de grado, Universidad Nacional Agraria de La Selva, Facultad de Recursos Naturales Renovables, Tingo María, Perú. 58 p.
  17. Hillel, D. 1982. Introduction to soil physics. Academic Press. San Diego, California. 364 pg.
  18. Instituto Geográfico Agustín Codazzi-IGAC. 2009. Estudio general de suelos y zonificación de tierras: Departamento de Córdoba. Instituto Geográfico Agustín Codazzi. Bogotá: Imprenta Nacional de Colombia.
  19. Lince-Salazar, L. A., Castro, A. F., Castaño, W. A. 2020. Estabilidad de agregados de suelos de la zona cafetera colombiana. Revista Cenicafé, 71(2), 73–91. https://doi.org/10.38141/10778/71206
  20. Prieto, B., Peroza, J., Grandett, G. 2010. Efecto de labranza y manejo de materiales orgánicos sobre algunas propiedades físicas y químicas de un vertic endoaquept del valle del Sinú, Córdoba Colombia. Temas Agrarios 15(2), 27. https://repositorio.unicordoba.edu.co/ handle/ucordoba/432
  21. Six, J., Elliott, E. T., Paustian, K. 2000. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 32(14), 2099–2103. https://doi.org/10.1016/S0038- 0717(00)00179-6
  22. US Department of Agriculture -USDA. 1999. Guía para la Evaluación de la Calidad y Salud del Suelo. Departamento de Agricultura de los Estados Unidos, Servicio de Investigación Agrícola, Servicio de Conservación de Recursos Naturales, Instituto de Calidad de Suelos, agosto, 1999. 82 pg.
  23. Zuñiga, O., Osorio, J. C., Cuero, R., Peña, J. A. 2011. Evaluación De Tecnologías Para La Recuperación De Suelos Degradados Por Salinidad Evaluation of Technologies for the Recovery of Soils Degraded By Salinity. Revista Facultad Nacional de Agronomía Medellín, 64(1), 5769–5779.

Sistema OJS 3.4.0.3 - Metabiblioteca |