Skip to main navigation menu Skip to main content Skip to site footer

Foliar growth and daily behavior of net photosynthesis in fique plants cv Ceniza (Furcraea cabuyaTrelease)

Crecimiento foliar y comportamiento diario de la fotosíntesis en plantas de fique cv Ceniza (Furcraea cabuya Trelease)



How to Cite
Cadena-Torres, J., Barragan Quijano, E., Romero Ferrer, J. L. ., & Mercado, K. . (2021). Foliar growth and daily behavior of net photosynthesis in fique plants cv Ceniza (Furcraea cabuyaTrelease). Sour Topics, 26(2), 129-139. https://doi.org/10.21897/rta.v26i2.2843

Dimensions
PlumX
Jorge Cadena-Torres
Eduardo Barragan Quijano
Jorge Luis Romero Ferrer
Kelly Mercado

The present study was carried out to monitor leaf growth, foliar emission, and the daily photosynthesis behavior of sisal plants cv Ceniza. In a commercial crop, sisal plants were selected and monitored weekly to determine increase in number, length, width, and thickness of the leaves, during a 154 day period. On two occasions during the experimental period, gas exchange rates were also monitored during the light and dark periods. The results allowed determining a phyllochron of 8.65 days. Gas exchange monitoring detected low stomatal conductance rates during the light period. However, starting at 15:30 h, stomatal conductance substantially increased, remaining at maximum levels throughout the dark period, and, subsequently, decreased from 09:30 h, the following light period. A high correlation of stomatal conductance with vapor pressure deficit and leaf temperature was found. Maximum CO2 fixation rates varied between 12.2 and 14.5 µmol m-2 s-1, recorded between 19:19 and 19:26 h. The results corroborate the CAM metabolism of sisal plants cv Ceniza.


Article visits 879 | PDF visits


Downloads

Download data is not yet available.
  1. Agronet, 2020. Área sembrada y área cosechada del cultivo de fique en Colombia. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
  2. Anandjiwala, R. D. and John, M. 2010. Sisal-cultivation, processing, and products. Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications, 181-95.
  3. Andrade, J. L., de la Barrera, E., Reyes Garcia, C., Ricalde, M. F., Vargas Soto, G. y Cervera, J. C. 2007. El metabolismo acido de las crasulaceae: diversidad, fisiologia ambiental y productividad. Boletín de la Sociedad Botánica de México, 81, 37–50.
  4. Casierra-posada, F. y Gómez, N. E. 2008. Crecimiento foliar y radical en plantas de fique (Furcraea castilla y F. macrophylla) bajo estrés por encharcamiento. Agronomia Colombiana, 26(3):381–388.
  5. Casierra-Posada, F. y González, D. M. 2009. Cambio circadiano de pH y acidez titulable en la savia de fique (Furcraea castilla y F. macrophylla). Orinoquia, 13(1): 5–13.
  6. Di Benedetto, A. y Tognetti, J. 2016. Técnicas de análisis de crecimiento de plantas : su aplicación a cultivos intensivos. Ria, 42(3): 258–282. http://www.scielo.org.ar/pdf/ria/v42n3/v42n3a07.pdf
  7. Eggli, U. and Nyffeler, R. 2020. Monocotyledons. In Monocotyledons: Illustrated Handbook of Succulent Plants. Springer. https://doi.org/10.1007/978-3-662-56486-8
  8. Lüttge, U. 2010. Ability of crassulacean acid metabolism plants to overcome interacting stresses in tropical environments. AoB PLANTS, 2010: 1–15. https://doi.org/10.1093/aobpla/plq005
  9. Murillo-Serna, J.S., Rincón-Baron, E.J. y Alzate-Guarín, F. 2018. Anatomía foliar comparativa de tres especies de Furcraea (Asparagaceae : Agavoideae). Hoehnea, 45(4): 607–615.
  10. Olmedilla Arnal, A., Alché Ramírez, J. D. D. y Rodríguez García, M. I. 2010. Identificación histológica y ultraestructural de plantas C 4 y CAM. C4 y CAM: Características Generales y Uso en Programas de Desarrollo de Tierras Áridas y Semiáridas. 107–114.
  11. Pereira, P. N., Niechayev, N. A., Blair, B.B. and Cushman, J. C. 2021. Chapter 10 Climate Change Responses and Adaptations in Crassulacean Acid Metabolism (CAM) Plants. https://doi.org/10.1007/978-3-030-64926-5_10
  12. Pimienta-Barrios, E., Zañudo-Hernández, J. and García-Galindo, J. 2006. Fotosíntesis estacional en plantas jóvenes de Agave tequilana. Agrociencia. 40(6): 699–709.
  13. Pimienta-barrios, E., Zañudo-Hernández, J., Nobel, P. S. y García-Galindo, J. 2005. Respuesta fisiológica a factores ambientales del agave azul (Agave. In scientiaCUCBA. 7(2).
  14. Shahzad, S., Hussain, M., Arfan, M. and Munir, H. 2022. Physiological and biochemical attributes of agave sisalana resilient adaptation to climatic and spatio-temporal conditions. Pakistan Journal of Botany. 54(1): 169–178. https://doi.org/10.30848/PJB2022-1(15)
  15. Winter, K. and Smith, J. A. C. 2022. CAM photosynthesis: the acid test. New Phytologist, 233(2): 599–609. https://doi.org/10.1111/nph.17790
  16. Schymanski, S.J. and Maciej Zwieniecki, O.D. 2013. Stomatal Control and Leaf Thermal and Hydraulic Capacitances under Rapid Environmental Fluctuations. PLoS ONE 8(1): e54231. https://doi.org/10.1371/journal.pone.0054231
  17. Yamori, W., Hikosaka, K. and Way, D. A. 2014. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Research, 119(1): 101-117.
  18. Yu, C. 2005. Sisal. In Bast and other plant fibres. Woodhead Publishing. 228-273.

Sistema OJS 3.4.0.3 - Metabiblioteca |