Skip to main navigation menu Skip to main content Skip to site footer

Biocontrol against Fusarium spp. in vanilla crop: A new study model

Biocontrol de Fusarium spp. en el cultivo de vainilla: Un nuevo modelo de estudio



How to Cite
Franco-Galindo , L. S. ., & Mosquera-Espinosa , A. T. (2023). Biocontrol against Fusarium spp. in vanilla crop: A new study model. Sour Topics, 28(1), 95-114. https://doi.org/10.21897/rta.v28i1.3350

Dimensions
PlumX
Laura Steffania Franco-Galindo
Ana Teresa Mosquera-Espinosa

Biological control is a potential and sustainable option to deal with crop production and yield problems affected by insects or pathogenic microorganisms. In vanilla crop, obtaining the natural scent present in its fruits is limited, mainly by diseases that affect commercial crops. The main disease of vanilla crop is root and stem rot (RSR), caused by F. oxysporum f. sp. radicis-vanillae and F. oxysporum f. sp. vanillae. We found that the use of endophytic fungi (EF) isolated from healthy or asymptomatic plants requires systematic research for the selection of the most effective species to control pathogens, particularly in this crop. Additionally, there is no evidence reported with respect to this topic, in spite of, the use of these microorganisms is a natural alternative in other crops, compared to the use of agrochemicals used in traditional agriculture. This review addresses the perspective, and raises the need for research on the potential use of endophytic fungi as biological control agents of fungal pathogens in cultivated plants, emphasizing the relationship Endophytic fungi-Vanilla-pathogenic Fusarium.


Article visits 283 | PDF visits


Downloads

Download data is not yet available.
  1. Abro, M., Sun, X., Li, X., Jatoi, G. y Guo, L. 2019. Biocontrol Potential of Fungal Endophytes against Fusarium oxysporum f. sp. cucumerinum causing Wilt in Cucumber. Plant Pathol. J. 35(6), 598-608. https://doi.org/10.5423/PPJ.OA.05.2019.0129
  2. Adame-García, J., Rodríguez, G, Iglesias, A., Ramos, P. y Luna, R. 2015a. Molecular identification and pathogenic variation of Fusarium species isolated from Vanilla planifolia in Papantla Mexico. Bot. Sci. 93, 669–678. https://doi.org/10.17129/bots-ci.142
  3. Adame-García, J., Luna-Rodríguez, M. y Iglesias-Andreu, L. 2015b. Vanilla Rhizobacteria as Antagonists against Fusarium oxysporum f. sp. vanillae. Int. J. Agric. Biol., 18(1). https://doi.org/10.17957/IJAB/15.0053
  4. Adeleke, B., Ayilara, M., Akinola, S. y Babalola, O. 2022. Biocontrol Mechanisms of endophytic fungi. Egyptian Journal of Biological Pest Control. 32:46. https://doi.org/10.1186/s41938-022-00547-1
  5. Ahmad, H., Ahmad, R., Asif, M., Adnan, M. y Idrees, M. 2020. Vanilla. In: Asif, M., Nawaz, H., Mumtaz, M., Byrne, M., (Eds.) Medicinal Plants of South Asia. Elsevier. 657-669. ISBN 9780081026595. https://doi.org/10.1016/B978-0-08-102659-5.00048-3
  6. Alabouvette, C., Olivain, C., Migheli, Q. y Steinberg, C. 2009. Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol. 184, 529-544. https://doi.org/10.1111/j.1469-8137.2009.03014.x
  7. Alomía, Y., Tupac-Otero, J. y Jersáková, J., Stevenson, P. 2022. Cultivable fungal community associated with the tropical orchid Dichaea andina. Fugal Ecol. 57- 58:101158. https://doi.org/10.1016/j.funeco.2022.101158
  8. Arnold, E., Mejía, L., Kyllo D., Rojas, E., Maynard, Z., Robbins, N. y Herre, E. 2003. Fungal Endophytes limit pathogen damage in a tropical tree. PNAS. 100(26), 15649-15654.
  9. Barolo, M., Castelli, M. y López, S. 2023. Antimicrobial properties and biotransformating ability of fungal endophytes from Ficus carica L. (Moraceae). Mycology. 1-24. https://doi.org/10.1080/21501203.2023.217550
  10. Barrera-Necha, L. y García-Barrera, L. 2008. Antifungal activity of essential oils and their compounds on the growth of Fusarium sp. Isolate from papaya (Carica papaya). Rev. UDO. Agric. 8(1), 33-41. https://dialnet.unirioja.es/servlet/articulo?codigo=3094829
  11. Bayman, P., Mosquera-Espinosa, A., Saladini-Aponte, C., Hurtado-Guevara, N. y Viera-Ruiz, N. 2016. Agede pendent mycorrhizal specificity in an invasive orchid, Oeceoclades macu- lata. Am. J. Bot. 103(11). 1880-1889. https://doi.org/10.3732/ajb.1600127
  12. Bayman, P. 2019. The History of Vanilla in Puerto Rico: Diversity, Rise, Fall, and Future Prospects. In: Havkin-Frenkel, D., Belanger, F. (Eds.) Handbook of Vanilla Science and Technology, 2nd Edition. Wiley Blackwell. pp. 111-118
  13. Bhai, R. y Dhanesh, J. 2008. Occurrence of fungal diseases in vanilla (Vanilla planifolia Andrews) in Kerala. J. Spices. Aromat. Crops. 17: 140–148. https://updatepublishing.com/journal/index.php/josac/article/view/4907
  14. Bhai, S., Remya, B., Danesh, J. y Eapen, S. 2009. In vitro and in planta assays for biological control of Fusarium root rot disease of Vanilla. J. Biol. Control. 23(1), 83-86. https://doi.org/10.18311/JBC/2009/3621
  15. Bordolla-Pérez, V., Iglesias-Andreu, L., Herrera-Cabrera, B. y Vovides-Papalouka, A. 2016. Aborción prematura de frutos de Vanilla planifolia Jack. Ex Andrews. Agro- Productividad. 9(S1). https://revista-agro-productividad.org/index.php/agroproducti-vidad/article/view/873
  16. Casillas-Isiordia, R., Flores-de la Rosa, F., Can-Chulim, A., Luna, E., Rodríguez-Guerra, R., Ramírez-Guerrero, L. y Luna-Rodríguez, M. 2017. Fusarium sp. associated with Vanilla sp. rot in Nayarit, Mexico. ARPN J. Agric. Biol. Sci. 12(2), 43-50. http://dspace.uan.mx:8080/jspui/handle/123456789/2207
  17. Carbajal-Valenzuela, I., Muñóz-Sanchez, A., Hernández-Hernández, J. Barona-Gómez, F., Truong, C. y Cibrián-Jaramillo, A. 2022. Microbial Diversity in Cultivated and Feral Vanilla Vanilla planifolia Orchids Affected by Stem and Rot Disease. Microb Ecol 84, 821–833. https://doi.org/10.1007/s00248-021-01876-8
  18. Card, S., Johnson, L., Teasdale, S. y Caradus, J. 2016. Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol. 92, fiw114. https://doi.org/10.1093/femsec/fiw114
  19. Chowdhary, K. y Kaushik, N. 2018. Biodiversity study and potential of fungal endophytes of peppermint and effect of their extract on chickpea rot pathogens. Arch. Phytopathol. Pflanzenschutz. 51, 139-155. https://doi.org/10.1080/03235408.2018.14 40707
  20. De Almeida, A., Concas, J., Campos, M., Materatski, P., Varanda, C., Patanita, M., Murolo, S., Romanazzi, G. y Do Rosario, M. 2020. Endophytic Fungi as PotentialBiological Control Agents against Grapevine Trunk Diseases in Alentejo Region. Biology. 9(12), 420. https://doi.org/10.3390/biology9120420
  21. De Silva, N., Brooks, S., Lumyong, S. y Hyde, K. 2019. Use of endophytes as biocontrol agents. Fungal Biol. Rev. 33, 133-148. https://doi.org/10.1016/j.fbr.2018.10.001
  22. Eke, P., Adamou, S., Fokom, R., Dinango, V., Tsouh, P., Wakam, L., Nwaga, D. y Fekam, F. 2020. Arbuscular mycorrhizal fungi alter antifungal potential of lemon- grass essential oil against Fusarium solani, causing root rot in common bean (Phaseolus vulgaris L.). Heliyon. 6: e05737. https://doi.org/10.1016/j.heliyon.2020.e05737
  23. Flanagan, N. y Mosquera-Espinosa, A. 2016. An integrated strategy for the conservation and sustainable use of native Vanilla species in Colombia. Lankesteriana. 16(2), 201–218. https://doi.org/10.15517/lank.v16i2.26007
  24. Flores-de la Rosa, F., De Luna, E., Adame-García, J., Iglesias-Andreu, L. y Luna-Rodríguez, M. 2018. Phylogenetic position and nucleotide diversity of Fusarium oxysporum f. sp. vanillae worldwide based on translation elongation factor 1α sequences. Plant Pathol. 67(6): 1278 – 1285. https://doi.org/10.1111/ppa.12847
  25. Food and Agriculture Organization Data (FAOSTAT). 2022. Vanilla Production. https://www.fao.org/faostat/en/#data
  26. Gamboa, M. y Bayman, P. 2001. Communities of Endophytic Fungi in leaves of a Tropical Timber Tree (Guarea guidonia: Meliaceae). Biotropica. 33(2), 352-360. https://www.jstor.org/stable/266384
  27. Gangadara, N., Saifulla, N., Najaraja, R. y Basavaraja, M. 2010. Biological control of Fusarium oxysporum f. sp. vanillae, the causal agent of stem rot of Vanilla in vitro. IJSN. 1(2), 259-261. ISSN 2229-6441
  28. Ge, A., Liang, Z., Xiao, J., Zhang, Y., Zeng, Q., Xiong, C., Han, L.,Wang, J. y Zhang, L. 2021. Microbial assembly and association network in watermelon rhizosphere after soil fumigation for Fusariumwilt control. Agric. Ecosyst. Environ. 312, 107336.http://doi.org/10.1016/j.agee.2021.107336
  29. Grisoni, M. y Nany, F. 2021. The beautiful hills: half a century of vanilla (Vanilla planifolia Jacks. ex Andrews) breeding in Madagascar. Genet Resour Crop Evol 68, 1691–1708. https://doi.org/10.1007/ s10722-021-01119-2
  30. Hernández, J., Quintana, F. y Nava, H. 2018. Monitoring and analyzing environmental factors favoring outbreaks of Fusarium oxysporum f. Sp. vanillaein a vanilla shade house. Int. J. Agric. Biol. 11(1): 58 – 65. https://doi.org/10.25165/j.ijabe.20181101.2803
  31. Hernández-Hernández, J. 2019. Vanilla Diseases. In: Havkin-Frenkel, D. y Belanger,F. (Eds.) Handbook of Vanilla Science and Technology, 2nd Edition. Wiley Blackwell. pp. 27-39
  32. Hernández-Hernández, J. 2014. Técnicas implementadas para el cultivo de vainilla en México. In: Araya, C., Cordero, R., Paniagua, A., Azofeifa, J. (Eds.). I Seminario Internacional de Vainilla. Promoviendo la investigación, la extensión y la producción de vainilla en Mesoamérica. pp. 81-92
  33. Horinouchi, H., Muslim, A. y Hyakumachi, M. 2010. Biocontrol of Fusarium wilt of spinach by the plant growth promoting fungus Fusarium equiseti GF183. J Plant Pathol. 92(1), 249-254. https://www.jstor.org/stable/41998793
  34. Huang, L., Niu, Y., Su, L., Deng, H. y Lyu, H. 2020. The potential of endophytic fungi isolated from cucurbit plants for biocontrol of soilborne fungal diseases of cucumber. Microbiol Res. 231, 126396. https://doi.org/10.1016/j.micres.2019.126369
  35. Jayasekhar, M., Manonmani, K., Justin, C. y Gailce, L. 2008. Development of integrated biocontrol strategy for the management of stem rot disease (Fusarium oxysporum f. sp. vanillae) of Vanilla. Agricultural Science Digest. 28(2), 109-111. https://arccjournals.com/journal/agricultural-science-digest/ARCC2554
  36. Kadir, N., Naher, L., Kayat, F., Sidek, N., Zain, N. y Bakar, T. 2021. Morphological and molecular identification of Fusarium spp. and Colletotrichum spp. isolated from infected vanilla orchid. Malays. J. Microbiol. 17(1): 42-51. http://dx.doi.org/10.21161/mjm.200846
  37. Foullaud, M., Verpoorte, R. y Kodja, H. 2015. Fungal endophytes of Vanilla across Réunion Island: isolation, distribution and biotransformation. BMC Plant Biol. 15,142. https://doi.org/10.1186/s12870-015-0522-5
  38. Koyyappurath, S., Conéjero, G., Dijoux, J., LApeyre-Montés, F., Jade, K., Chiro- leu, F., Verdeil, J., Besse, P. y Grisoni, M. 2015. Differential responses of Vanilla Accessions to Root Rot and Colonization by Fusarium oxysporum f. sp. radicis. vanillae. Front. Plant Sci. 6:1125. https://doi.org/10.3389/fpls.2015.01125
  39. Koyyappurath, S., Atuahiva, T., Le Guen, R., Batina, H., Le Squin, S., Gautheron, N., Edel Hermann, V., Peribe, J., Jahiel, M., Steinberg, C., Liew, E., Alabouvette, C., Besse, P., Dron, M., Sache, I., Laval, V. y Grisoni, M. 2016. Fusarium oxysporum f. sp. radicis-vanillae is the causal agent of root and stem rot of Vanilla. Plant Pathol. 65,612-625. https://doi.org/10.1111/ppa.12445
  40. Latz, M., Jensen, B., Collinge, D. y Jørgensen, H. 2018. Endophytic fungi as biocontrol agents: Elucidating mechanisms in disease suppression. Plant Ecol Divers 11:555–567. https://doi.org/10.1080/17550874.2018.1534146
  41. Li, H., Yan, C., Tang, Y., Ma, X., Chen, Y., Chen, S., Lin, M. y Liu, Z. 2020a. Endophytic bacterial and fungal microbiota in different cultivars of cassava (Manihot esculenta Crantz). J Microbiol. 58, 614–623. https://doi.org/10.1007/s12275-020-9565-x
  42. Li, Z., Ma, L., Zhang, Y., Zhao, W., Zhao, B. y Zhang, J. 2020b. Effect of wheat cultivars with different resistance to Fusarium graminearum abundance and microbial community composition. Plant Soil. 448:383-397. https://doi.org/10.1007/s11104-020-04441-3
  43. Li, W. y Liu, Q. 2019. Changes in fungal community and diversity in strawberry rhizosphere soil after 12 years in the greenhouse. Journal of Integrative Agriculture. 18(3): 677-687. https://doi.org/10.1016/S2095-3119(18)62003-9
  44. Manosalva-Estepa, J. y Mosquera-Espinosa, A. 2014. Enfermedades fungosas en Uchuva (Physalis peruviana) y evaluación in vitro de hongos endófitos con actividad biocontroladora. Rev. Fito. Colomb. 38(1), 1-8
  45. Marín-Montoya, M., Santa-Cardona, C. y Díez, M. 2012. Identification of the causal agent of vanilla basal stem rot in crops under greenhouse shed conditions from Colombia. Rev. Mex. Mic. 35, 23-34. https://www.scielo.org.mx/scielo.php?pi- d=S0187-31802012000100004&script=s-ci_abstract&tlng=en
  46. Montes de Oca-Vásquez, G.M., Solano-Campos, F., Azofeifa- Bolaños, B., Paniagua-Vásquez, A., Vega- Baudrit, J., Ruiz-Navarro, A., López- Mondéjar, R. y Bastida, F. 2020. Microhabitat heterogeneity associated with Vanillaspp. and its influences on the microbial community of leaf litter and soil. Soil Ecol. Lett. 2, 195–208. https://doi.org/10.1007/s42832-020-0041-7
  47. Mosquera-Espinosa, A., Bonilla-Monar, A., Flanagan, N. ,Rivas, Á., Sánchez, F., Chavarriaga, P., Bedoya, A. y Riascos-Ortiz, D. 2022. In Vitro Evaluation of the Development of Fusarium in Vanilla Accessions. Agronomy. 12, 2831. https://doi.org/10.3390/agronomy12112831
  48. Mosquera-Espinosa, A., Bayman, P., Prado, G., Gómez-Carabali, A. y Tupac, J. 2013. The double life of Ceratoabasidium: orchid mycorryzal fungi and their potential for biocontrol of Rhizoctonia sonani sheath blight of rice. Mycologia. 105(1), 141–150. https://doi.org/10.3852/12-079
  49. Muchem, M. y Yemata, G. 2022. Epidemio- logy and pathogenicity of vascular wilt of chickpea (Cicer arietinum L.) caused by Fusarium oxyporum f.sp. ciceris, and the host defense responses. S. Afr. J. Bot. 151:339-348. https://doi.org/10.1016/j.sajb.2022.10.008
  50. Murphy, B., Jadwiszczak, M., Soldi, E. y Hodkindson, T. 2018. Endophytes from the crop wild relative Hordeum secalinum L. improve agronomic traits in unstressed and salt-stressed barley. 4, 1548195. https://doi.org/10.1080/23311932.2018.1549195
  51. Nguyen, M., Yong, J., Sung, H. y Lee, J. 2020. Screening of Endophytic Fungal Isolates Against Raffaelea quercus- mongolicae Causing Oak Wilt Disease in Korea. Mycobiology. 48, 484-494. https:// doi.org/10.1080/12298093.2020.1830486
  52. Novotná, A., Benítez, Á., Herrera, P., Cruz, D., Filipczyková, E. y Suárez, J. 2018. High diversity of root-associated fungi iso- lated from three epiphytic orchids in southern Ecuador. Mycoscience. 59:24-32. https://doi.org/10.1016/j.myc.2017.07.007
  53. Olatunde, A., Mohammed, A., Ibrahim, M., Tajuddeen, N. y Shuaibu, M. 2022. Vainillin: A food additive with multiple biological activities. Eur. J. Med. Chem. 5: 10055. https://doi.org/10.1016/j.ejmcr.2022.100055
  54. Olantinwo, R., So, C. y Eberhardt, T. 2019. Effect of Acaromyces Ingoldii Secondary Metabolites on the Growth of Brown-Rot (Gloeophyllum Trabeum) and White-Rot (Trametes Versicolor) Fungi. 47, 506-511. Mycobiology. https://doi.org/10.1080/12298093.2019.1686944
  55. Ordoñez, N., Otero, T. y Díez, C. 2012. Hongos endófitos de orquídeas y su efecto sobre el crecimiento de Vanilla planifolia Andrews. Acta Agron. 61(3), 282-290. http://www.scielo. org.co/scielo.php?script=sci_art tex-t pid= S 0120- 28122012000300010
  56. Peters, L., Prado, L., Silva, F., Souza, F. y Carvalho, C. 2020. Selection of endophytes as antagonists of Colletotrichum gloesporioides in acai palm. Biol. Control. 150:104350. https://doi.org/10.1016/j.biocontrol.2020.104350
  57. Pinaria, A., Liew, E. y Burgess, L. 2010. Fusarium species associated with vanilla stem rot in Indonesia. Australas Pl. Pathol. 39, 176–183. https://doi.org/10.1071/AP09079
  58. Pinaria, A., Laurence, M., Burgess, L. y Liew, E. 2015. Phylogeny and origin of Fusarium oxysporum f. sp. vanillae in Indonesia. Plant Pathol. 64, 1358-1465. https://doi.org/10.1111/ppa.12365
  59. Porras-Alfaro, A. y Bayman, P. 2011. Hidden Fungi, Emergent Properties: Endophytes and Microbiomes. Annu Rev Phytopathol. 49, 291–315. https://doi.org/10.1146/annurev-phyto-080508-081831
  60. Radjacommare, R., Venkatesan, S. y Samiyappan, R. 2010. Biological control of phytopathogenic fungi of vanilla through lytic action of Thichoderma species and Pseudomonas fluorescens. Arch. Phyto- pathol. Pflanzenschutz. 43(1), 1-17. https://doi.org/10.1080/03235400701650494
  61. Ramírez-Mosqueda, M., Iglesias-Andreu, L., Luna-Rodríguez, M. y Castro-Luna, A. 2015.In vitro phytotoxicity of culture filtrates of Fusarium oxysporum f. sp. vanillae in Vanilla planifolia Jacks. Sci Hortic. 197, 573–578. https://doi.org/10.1016/j.scienta.2015.10.019
  62. Ramírez-Mosqueda, M., Iglesias-Andreu, L., Noa-Carrazana, J. y Armas-Silva, A. 2018. Selection of Vanilla planifolia Jacks. ex Andrews genotypes resistant to Fusarium oxysporum f. sp. vanillae, by biotechnology.Rev.Agro.Prod.11(3),70-74. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/219
  63. Ramírez-Mosqueda, M., Iglesias-Andreu, L., Telxeira da Silva, J., Luna-Rodríguez, M., Noa-Carrazana, J., Bautista-Aguilar, J., Leyva-Ovalle, O. y Murguía-González, J. 2019. In vitro selection of vanilla plants resistant to Fusarium oxysporum f. sp. vanilla. Acta Physiol. Plant. 41, 40. https:// doi.org/10.1007/s11738-019-2832-y
  64. Ramos-Quintana, F., Bautista-Hernández, A. y Sotelo-Nava, H. 2017. Relationship between temperature and relative humidity with the outbreak of the fungus Fusarium oxysporum f. sp. vanillae Rev. Mex. Cien Agr. 8(3), 713-720. https://doi.org/10.29312/remexca.v8i3.44
  65. Ratankumar, A., Sharma, S., Behere, G., Akoijam, R., Singh, Y., Thokchom, S. y Nongtdu, E. 2022. First report of Fusarium oxysporum causing damping-off of tree bean (Parkia timoriana) seedlings in Northeastern India. Crop Protection. 155:105935. https://doi.org/10.1016/j.cropro.2022.105935
  66. Rather, R., Srinivasan, V. y Anwar, M. 2018. Seasonal deviation effects foliar endophyte assemblage and diversity in Asparagus racemosus and Hemidesmus indicus. BMC Ecol 18, 52. https://doi.org/10.1186/ s12898-018-0211-y
  67. Rodriguez, R., White Jr, J., Arnold, A. y Redman, A. 2009. Fungal endophytes: diversity and functional roles. New phytologist. 182(2), 314-330. https://doi.org/10.1111/j.1469-8137.2009.02773.x
  68. Rojas, E., Jensen, B., Jorgensen, H., Latz, M., Esteban, P., Ding, Y. y Collinge, D. 2020a. Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biol Control. 144, 104-222. https://doi.org/10.1016/j.biocontrol.2020.104222
  69. Rojas, E., Sapkota, R., Jensen, B., Jorgensen, H., Henriksson, T., Jorgensen, L., Nicolaisen, M. y Collinge, D. 2020b. Fusarium Head Blight Modifies Fungal Endophytic Communities During In- fection of Wheat Spikes. Microb. Ecol. 79, 397-408. https://doi.org/10.1007/s00248-019-01426-3
  70. Romero-Cortes, T., Pérez, V., López, P., Rodríguez-Jimenes, G., Robles-Olvera, V. y Aparicio, J. 2019. Antifungal activity of vanilla juice and vanillin against Alterna- ria alternata. CYTA–Journal of Food. 17, (1): 375–383. https://doi.org/10.1080/19476337.2019.1586776
  71. Sandheep, A., Asok, A. y Jisha, M. 2012. Biocontrol of Fusarium wilt of vanilla (Vanilla planifolia) using combined inoculation of Trichoderma sp. and Pseudomonas sp. Int. J. Pharma Bio Sci. 3(3), 706 – 716. https://doi.org/10.3923/pjbs.2013.580.584
  72. Sarsaiya, S., Shi, J. y Chen, J. 2019. A comprehensive review on fungal endophytes and its dynamics on Orchidaceae plants: current research, challenges, and future possibilities. Bioengineered. 10(1), 316-334. https://doi.org/10.1080/21655979.2019.1644854
  73. Scott, M., Rani, M., Samsatly, J., Charron,J. y Jabaji, S. 2018. Endophytes of industrial hemp (Cannabis sativa L.) cultivars: identification of culturable bacteria and fungi in leaves, petioles, and seeds. Can J Microbiol. 64(10):664-680. https://doi.org/10.1139/cjm-2018-0108
  74. Shahrtash, M. y Brown, S. 2023. Interactions between fungal endophytes and pathogens isolated from the invasive plant kudzu (Pueraria montana var. lobata). Arch. Phytopathol. Pflanzenschutz. 56, 87-107. https://doi.org/10.1080/03235408.2023.2178055
  75. Sharma, P. 2022. Biocontrol strategies retrospect and prospects. Indian Phytopathol. https://doi.org/10.1007/s42360-023-00601-4
  76. Sharma, S., Gupta, S., Dhar, M. y Kaul, S. 2018. Diversity and Bioactive Potential of Culturable Fungal Endophytes of Medicinal Shrub Berberis aristata DC.: A First Report. Mycobiology. 46, 370-381.https://doi.org/1 0.1080/12298093.2018.1538068
  77. Silva, R., Neto, W., Oliveira, R., Bezerra, J., Bezerra, J., De Lima, V., Vieira, L., Tobosa, J., Souza-Motta, C. y Silva, G. 2023. Effect of climate and phenological stage on fungal endophytes community on Sorghum bicolor leaves. Mycol. Prog. 22,19.
  78. Solano-De la Cruz, M.T., Adame-García, J., Gregorio-Jorge, J., Jiménez-Jacinto, V., Vega-Alvarado, L., Iglesias-Andreu, L., Escobar-Hernández, E. y Luna-Rodríguez, M. 2019. Functional categorization of de novo transcriptome assembly of Vanilla planifolia Jacks. potentially points to a translational regulation during early stages of infection by Fusarium oxysporum f. sp. vanillae. BMC Genomics. 20, 826. https://doi.org/10.1186/s12864-019-6229-5
  79. Soleha, S., Muslim, A., Suwandi, S., Kadir, S. y Pratama, R. 2022. The identification and pathogenicity of Fusarium oxysporum causing acacia seedling wilt disease. J. For. Res. 33, 711–719. https://doi.org/10.1007/s11676-021-01355-3
  80. Soto-Arenas, M. y Dressler, R. 2004. Vanilla. In: Hammel, B., Grayum, M., Herrera C., Zamora, N. (Eds.) Manual de Plantas de Costa Rica, III, Monocotiledónea (Orchidaceae-Zingiberaceae). Missouri Botanical Garden, -INBio-Museo Nacional de Costa Rica. pp. 383-387
  81. Srivastava, S., Kadooka, C. y Uchida, J. 2018. Fusarium species as pathogen on orchids. Microbiol Res. 207, 188-195. https://doi.org/10.1016/j.mi-cres.2017.12.002
  82. Suryanarayanan, T., Rajulu, G. y Vidal, S. 2016. Biological control through fungal endophytes: Gaps in knowledge hindering success. Curr. Biotecnol. 5(3), 1-14. https://doi.org/10.2174/2211550105666160504130322
  83. Talapatra, K., Roy, A., Saha, A. y Das, P. 2017. In vitro antagonistic activity of a root endophytic fungus towards plant pathogenic fungi. J. appl. Biol. Biotech- nol. 5(2), 68-71. https://doi.org/10.7324/JABB.2017.50210
  84. Talukdar, R. y Tayung, K. 2021. Endophytic fungal assemblages of Zanthoxylum oxyphyllum and their antimicrobial potential. Plant Science Today. 8(1):132–139. hhttps://doi.org/10.14719/pst.2021.8.1.979
  85. Villamizar-Gallardo, R., Ortiz-Rodríguez, O. y Escobar, J. 2017. Symbiotic and endophytic fungi as biocontrols against cocoa (Theobroma cacao L.) phytopathogens. Summa Phytopathol. 43(2), 87-93. https://doi.org/10.1590/0100-5405/2175
  86. Villavicencio-Vásquez, M., Espinosa- Lozano, R., Pérez-Martínez, S. y Sosa del Castillo, D. 2018. Foliar endophyte fungi as candidate for biocontrol against Moniliophthora spp. of Theobroma cacao (Malvaceae) in Ecuador. Acta. Biol. Col. 23(3), 235-241. https://doi.org/10.15446/abc.v23n3.69455
  87. White, J., Torres, M., Sullivan, R., Jabbour, R., Chen, Q., Tadych, M., Irizarry, I., Bergen, M., Havkin-Frenkel, D. y Belanger, F. 2014. Microscopy Research and Technique: Ocurrence of Bacillus amyloliquefaciens as a Systemic En- dophyte of Vanilla Orchids. Microsc. Res. Techniq. 77(11), 874-885. https://doi.org/10.1002/jemt.22410
  88. Wilson, D. 1995. Endophyte: The Evolution of a Term, and Clarification of Its Use and Definition. Oikos. 73(2), 274-276. https://doi.org/10.2307/3545919
  89. Wu, Z., Su, Q., Cui, Y. He, H., Wnag, J., Zhang, Y., Zhao, Y., Abul, H., Yang, Y. y Long, Y, 2020. Temporal and spatial pattern of endophytic fungi diversity of Camellia sinensis (cv. Shu Cha Zao). BMC Microbiol 20, 270. https://doi.org/10.1186/s12866-020-01941-1
  90. Wu, AL., Jiao, XY., Fan, FF., Wang, JS., Guo, J., Dong, EW., Wang, LG. y Shen, XM. 2019. Effect of continuous sorghum cropping on the rhizosphere microbialcommunityand the role of Bacillus amyloliquefaciens in altering the microbial composition. Plant Growth Regul. 89, 299–308.https://doi.org/10.1007/s10725-019-00533-y
  91. Xiong, W., Li, R., Ren, Y., Liu, C., Zhao, Q., Wu, H., Jousset, A. y Shen, Q. 2017. Distinct roles for soil fungal and bacterial communities associated with the suppres- sion of vanilla Fusarium wilt disease. Soil Biol. Biochem. 107, 198–207. https://doi.org/10.1016/j.soilbio.2017.01.010
  92. Xiong, W., Zhao, Q., Xue, C., Xun, W., Zhao, J., Wu, H., Li, R. y Shen, Q. 2016. Comparison of Fungal Community in Black Pepper-Vanilla and Vanilla Monoculture Systems Associated with Vanilla Fusarium Wilt Disease. Front. Microbiol. 7:117. http//doi.org/10.3389/fmicb.2016.00117
  93. Xiong, W., Zhao, Q., Zhao, J., Xun, W., Li, R., Zhang, R. y Shen, Q. 2015. Different Continuous Cropping Spans Significantly Affect Microbial Commu- nity Membership and Structure in a Vanilla-Grown Soil as Revealed by Deep Pyrosequencing. Microb. Ecol. 70(1): 209–218. https://doi.org/10.1007/s00248-014-0516-0
  94. Yang, J., Ren, X., Liu, M., Fan, P., Ruan,P., Zhao, Y., Wang, B. y Li, R. 2022. Suppressing soil-borne Fusarium pathogens of bananas by planting different cultivars of pineapples, with comparisons of the resulting bacterial and fungal communities. Appl. Soil. Ecol. 169:104211. https://doi.org/10.1016/j.apsoil.2021.104211
  95. Yu, J., Wu, Y., He, Z., Li, M., Zhu, K. y Gao, B. 2018. Diversity and antifungal activity of endophytic fungi associated with Camellia oleifera. Mycobiology. 46, 85-91. https://doi.org/10.1080/12298093.2018.1454008
  96. Zhang, Y., Tian, C., Xiao, J., Wei, L., Tian, Y. y Liang, Z. 2020. Soil inoculation of Trichoderma asperellum M45a regulates rhizosphere microbes and triggers watermelon resistance to Fusarium wilt. AMB Expr. 10, 189.https://doi.org/10.1186/s13568-020-01126-z
  97. Zhang, Y., Yu, X., Zhang, W., Lang, D., Zhang, X., Cui, G. y Zhang, X. 2019. Interactions between Endophytes and Plants: Beneficial Effect of Endophytes to Ameliorate Biotic and Abiotic Stresses in Plants. J. Plant Biol. 62, 1–13. https://doi.org/10.1007/s12374-018-0274-5
  98. Zhao, Q., Wang, H. y Wang, H. 2012. Effects of planting period on vanilla physiological indices and rhizosphere soil microbial community structure. Chin J Trop Crop. 33:1562–1567

Sistema OJS 3.4.0.3 - Metabiblioteca |