Skip to main navigation menu Skip to main content Skip to site footer

Co-inoculation of microbial biofertilizers in cucumber and green bean and its effect on growth and yield

Coinoculación de biofertilizantes microbianos en pepino y habichuela y su efecto en el crecimiento y rendimiento



How to Cite
Calero Hurtado, A., Pérez Díaz, Y., Peña Calzada, K., Olivera Viciedo, D. ., Jiménez Hernández, J. ., & Carabeo Pérez, A. . (2023). Co-inoculation of microbial biofertilizers in cucumber and green bean and its effect on growth and yield. Sour Topics, 28(2), 220-232. https://doi.org/10.21897/bz3pzk58

Dimensions
PlumX
Alexander Calero Hurtado
Yanery Pérez Díaz
Kolima Peña Calzada
Dilier Olivera Viciedo
Janet Jiménez Hernández
Annerys Carabeo Pérez

Inoculation between bacteria and fungi can be an efficient and viable alternative for production of horticultural crops. The purpose of this research was to evaluate the effects of co-inoculation between Trichoderma harzianum and the biostimulant ME-50® on the growth promotion and productivity of cucumber (Cucumis sativus L.) and green beans [Vigna unguiculata (L.) Walpen]. Two experiments under garden conditions were carried out, in a 2×2 factorial arrangement, in a random blocks with five replicates, to evaluate the effects of inoculation (100 mL L−1) and not inoculation to the soil with the bioestimulant ME-50® in combination with seed inoculation (100 mL L−1) and non-inoculation seeds with T. harzianum strain A-34 to improve the growth (height, leaf area and dry matter of leaves and stems) and productivity (number, length and mass of fruits and yield) of cucumber and green beans. Inoculation with the biostimulant ME-50® promoted greater growth and productivity of cucumber and green bean plants compared to the inoculation with T. harzianum. However, coinoculation between both biostimulants was more efficient in the growth and development of both plant species; increasing the productivity of cucumber (133 %) and green beans (138 %). The results of this study suggest that coinoculation between the biostimulant ME-50® and T. harzianum has a synergistic, efficient and viable effect on the growth and productivity of cucumber and green beans plants, being considered useful in organic, ecological and sustainable of the crops.


Article visits 184 | PDF visits


Downloads

Download data is not yet available.
  1. Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S. y Enshasy, H. El. 2021. Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability 13(3): 1140. https://doi.org/10.3390/su13031140
  2. Calero Hurtado, A., Díaz, Y. P., Hurtado, Y. G.-P., Simón, L. A. Y., Calzada, K. P., Olivera-Viciedo, D. y Rodríguez, J. F. M. 2020a. Green bean agro-productive response to the application of leached vermicompost and efficient microorganisms. Revista de la Facultad de Ciencias 9(1): 112–124. https://doi.org/10.15446/REV.FAC.CIENC.V9N1.82584
  3. Calero Hurtado, A., Olivera Viciedo, D., Pérez Díaz, Y., Hurtado, Y. G.-P., Yánez Simón, L. A. y Peña Calzada, K. 2020b. Management of different planting densities and application of efficient microorganisms increase rice productivity. IDESIA (Arica) 38(2): 109–117. https://doi.org/10.4067/S0718-34292020000200109
  4. Calero Hurtado, A., Pérez Díaz, Y., Olivera Viciedo, D., Quintero Rodríguez, E., Peña Calzada, K., Theodore Nedd, L. L. y Jiménez Hernández, J. 2019a. Effect of different application forms of efficient microorganisms on the agricultural productive of two bean cultivars. Revista de la Facultad Nacional de Agronomía Medellín 72(3): 8927–8935. https://doi.org/10.15446/rfnam.v72n3.76272
  5. Calero Hurtado, A., Pérez, Y., Peña, K., Quintero, E. y Olivera, D. 2019b. Efecto de tres bioestimulantes en el comportamiento morfológico y productivo del cultivo del rábano (Raphanus sativus L.). Revista de la Facultad de Agronomía (LUZ) 36(1):54–73.
  6. Calero Hurtado, A., Quintero, E., Pérez, Y., González-Pardo, Y. y Lorenzo, T. N. 2019c. Microorganismos eficientes y vermicompost lixiviado aumentan la producción de pepino. Revista U.D.C.A Actualidad & Divulgación Científica 22(2): e1167. https://doi.org/10.31910/RUDCA.V22.N2.2019.1167
  7. Calero-Hurtado, A., Pérez-Díaz, Y., Rodríguez-Lorenzo, M. y Rodríguez-González, V. 2022. Joint application of beneficial microorganisms consortium and FitoMas-E® increases the agricultural indicators of beans. Revista U.D.C.A Actualidad & Divulgación Científica 25(1): e2252. https://doi.org/10.31910/RUDCA.V25.N1.2022.2252
  8. Calero Hurtado, A., Quintero Rodríguez, E., Pérez Díaz, Y., Jiménez Hernández, J. y Castro Lizazo, I. 2020c. Association between AzoFert® and efficient microorganism potentiates the growth and productivity of beans. Revista de la Facultad de Agronomía (LUZ) 37(4): 387–409. https://doi.org/10.47280/RevFacAgron(LUZ).v37.n4.04
  9. Carabeo, A., Jiménez, J., GIL, Z., Henderson, D., Adams, P. y Calero-Hurtado, A. 2022. Taxonomic identification and diversity of effective soil microorganisms: towards a better understanding of this microbiome. Agronomía Colombiana 40(2): 278–292. https://doi.org/10.15446/agron.colomb.v40n2.101378
  10. Cubilla-Ríos, A. A., Ruíz-Díaz-Mendoza, D. D., Romero-Rodríguez, M. C., Flores-Giubi, M. E. y Barúa-Chamorro, J. E. 2019. Antibiosis de proteínas y metabolitos en especies de Trichoderma contra aislamientos paraguayos de Macrophomina phaseolina. Agronomía Mesoamericana 30(1): 63–77. https://doi.org/10.15517/am.v30i1.34423
  11. Herrera-Parra, E., Cristóbal-Alejo, J., Zavala-León, M. J., Basto-Pool, C. I., Agrarios, T. y citar Herrera-Parra, C. 2023. Hongos micorrícicos arbusculares y Trichoderma en Capsicum annuum disminuyen el daño inducido por Meloidogyne incognita. Temas Agrarios, 28(1): 37–45. https://doi.org/10.21897/RTA.V28I1.3158
  12. Henry, A. B., Maung, C. E. H. y Kim, K. Y. 2020. Metagenomic analysis reveals enhanced biodiversity and composting efficiency of lignocellulosic waste by thermoacidophilic effective microorganism (tEM). Journal of Environmental Management 276: 111252. https://doi.org/10.1016/j.jenvman.2020.111252
  13. Hoseini, A., Salehi, A., Sayyed, R. Z., Balouchi, H., Moradi, A., Piri, R., Fazeli-Nasab, B., Poczai, P., Ansari, M. J., Obaid, S. Al y Datta, R. 2022. Efficacy of biological agents and fillers seed coating in improving drought stress in anise. Frontiers in Plant Science 13: 955512. https://doi.org/10.3389/FPLS.2022.955512/BIBTEX
  14. Jindo, K., Canellas, L. P., Albacete, A., Figueiredo, L., Luiz, R., Rocha, F. y Baia, D. C. 2020. Interaction between Humic Substances and Plant Hormones for Phosphorous Acquisition. Agronomy, 10: 640. https://doi.org/10.3390/agronomy10050640
  15. Kemp, C. 1960. Methods of estimating the leaf area of grasses from linear measurements. Annals of Botany 24(4): 491–499. https://doi.org/10.1093/oxfordjournals.aob.a083723
  16. Keswani, C., Prakash, O., Bharti, N., Vílchez, J. I., Sansinenea, E., Lally, R. D., Borriss, R., Singh, S. P., Gupta, V. K., Fraceto, L. F., Lima, R. D. y Singh, H. B. 2019. Re-addressing the biosafety issues of plant growth promoting rhizobacteria. Science of the Total Environment 690: 841–852. https://doi.org/10.1016/j.scitotenv.2019.07.046
  17. Liriano, R., Núñez, D., Hernández, L. y Castro, A. 2015. Evaluación de microorganismos eficientes y Trichoderma harzianum en la producción de posturas de cebolla (Allium cepa L.). Centro Agrícola 42(2):25–32.
  18. Lizazo, I. C., Calero Hurtado, A., Rodríguez Hernández, M. G., Casas, A. P., Balmori, D. M. y Díaz, Y. P. 2022. Potencialidades de dos bioestimulantes en la germinación y el crecimiento de las plántulas de tomate. Ciencia y Tecnología Agropecuaria 23(1): e2343. https://doi.org/10.21930/rcta.vol23_num1_art:2343
  19. López, E., Calero, A., Gómez, Y., Gil, Z., Henderson, D. y Jiménez, J. 2017a. Efecto agronómico del biosólido en cultivo de tomate (Solanum lycopersicum): control biológico de Rhizoctonia solani. Cultivos Tropicales 38(1):13–23.
  20. López, E., Unday, Z. G., Henderson, D., Calero, A. y Jiménez, J. 2017b. Uso de efluente de planta de biogás y microorganismos eficientes como biofertilizantes en plantas de cebolla (Allium cepa., cv. Caribe-71). Cultivos Tropicales 38(4):7–14.
  21. Naik, K., Mishra, S., Srichandan, H., Singh, P. K. y Sarangi, P. K. 2019. Plant growth promoting microbes: Potential link to sustainable agriculture and environment. Biocatalysis and Agricultural Biotechnology 21: 101326. https://doi.org/10.1016/j.bcab.2019.101326
  22. Olivera, D., Leiva, L., Calero Hurtado, A. y Meléndrez, J. F. 2015. Empleo de microorganismos nativos multipropósitos (MNM) en el comportamiento agro-productivo de cultivos hortícolas. Agrotecnia de Cuba 39(7):34–42.
  23. Paungfoo-Lonhienne, C., Redding, M., Pratt, C. y Wang, W. 2019. Plant growth promoting rhizobacteria increase the efficiency of fertilisers while reducing nitrogen loss. Journal of Environmental Management 233: 337–341. https://doi.org/10.1016/J.JENVMAN.2018.12.052
  24. Pérez, Y., Ayala, J. L. y Calero, A. 2014. Applications the Trichobiol 34 PH in the control the nematodes in house cultivation. Centro Agrícola 41(3):43–45.
  25. Pérez, Y., Ayala, J. y Calero, A. 2013. Biostimulant effects of two liquids formulated of Trichoderma harzianum Rifai A-34 in tomatoes in green house. Centro Agrícola 40(3):53–56.
  26. Raij, B. V., Andrade, J. C., Cantarella, H. y Quaggio, J. 2001. Análise química para avaliação da fertilidade de solos tropicais. 2a ed. Instituto Agronômico, Campinas, São Paulo, Brasil, 285 pp.
  27. R Core Team. 2019. “R: A language and environment for statistical computing, 2015.” (p. 4). http://www.r-project.org/
  28. Singh, A., Karmegam, N., Singh, G. S., Bhadauria, T., Chang, S. W., Awasthi, M. K., Sudhakar, S., Arunachalam, K. D., Biruntha, M. y Ravindran, B. 2020. Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt. Environmental Geochemistry and Health 42: 1617–1642. https://doi.org/10.1007/s10653-019-00510-4
  29. Singh, P., Singh, R., Madhu, G. S. y Singh, V. P.(2022. Seed biopriming with Trichoderma harzianum for growth promotion and drought tolerance in rice (Oryza sativus). Agricultural Research 12: 154–162. https://doi.org/10.1007/s40003-022-00641-8

Sistema OJS 3.4.0.3 - Metabiblioteca |