Skip to main navigation menu Skip to main content Skip to site footer

Plant densities and foliar application of amino acids increasing sesame yield

Densidades de plantas y aplicación foliar de aminoácidos incrementan el rendimiento del ajonjolí



How to Cite
Pérez Díaz, Y., Calero Hurtado, A., Peña Calzada, K., Gutiérrez Díaz, J. L., & Rodríguez González, V. (2024). Plant densities and foliar application of amino acids increasing sesame yield. Sour Topics, 29(1), 100-112. https://doi.org/10.21897/w2sd1542

Dimensions
PlumX
Yanery Pérez Díaz
Alexander Calero Hurtado
Kolima Peña Calzada
Jorge Luis Gutiérrez Díaz
Venancio Rodríguez González

The use of adequate plant density in combination with the amino acid application can play a decisive role in achieving optimal yields in sesame crops. In order to evaluate the effects of the influence of plant densities and the application of amino acids on the growth and yield of sesame seeds in the rainy season, an experiment was carried out between June and October 2023. Three doses of amino acids (AV) were examined: without VA, 0.25 and 0.50 L ha-1 and two plant densities (25,000 and 29,000 plants/ha), distributed in Split-plots, in a randomized block design with three replications. The results showed that plant densities influence the growth and yield of the sesame crop, the density of 25,000 plants ha-1 influenced the number of plant leaves, leaf area and the AF/NH ratio, while the density of 29,000 plants ha-1 showed greater plant height and yield. Additionally, the dose of 0.25 L ha-1 promoted the growth of sesame plants at the density of 25,000 plants/ha and a higher yield at the density of 29,000 plants/ha, while the dose of 0 .50 L ha-1 of amino acids showed greater productivity at the density of 25,000 plants/ha. The results of this study suggest that the use of high plant densities in combination with the foliar application of amino acids is an viable strategy to increase sesame productivity in the rainy season.


Article visits 130 | PDF visits


Downloads

Download data is not yet available.
  1. Abbas, M., Abdel-Lattif, H., Badawy, R., Abd El-Wahab, M. y Shahba, M. 2022. Compost and biostimulants versus mineral nitrogen on productivity and grain quality of two wheat cultivars. Agriculture, 12(5): 699. https://doi.org/10.3390/agriculture12050699
  2. Al-Karaki, G. N. y Othman, Y. 2023. Effect of foliar application of amino acid biostimulants on growth, macronutrient, total phenol contents and antioxidant activity of soilless grown lettuce cultivars. South African Journal of Botany, 154: 225-231. https://doi.org/10.1016/j.sajb.2023.01.034
  3. Andrade, J. F., Ermacora, M., De Grazia, J., Rodríguez, H., Mc Grech, E., y Satorre, E. H. 2023. Soybean seed yield and protein response to crop rotation and fertilization strategies in previous seasons. European Journal of Agronomy, 149: 126915. https://doi.org/10.1016/j.eja.2023.126915
  4. Attibayeba, Nsika-Mikoko, E., N`Kounkou, J. S., Cerely Dianga, J. G. y Mandoukou-Yembi, F. 2010. Description of different growth stages of Sesamum indicum L. using the extended BBCH scale. Pakistan Journal of Nutrition, 9(3): 235-239. https://doi.org/10.3923/pjn.2010.235.239
  5. Azanaw, M. y Singh, S. 2023. Exploiting morpho-physiological variation driven by plant density to maximize sesame (Sesamum indicum L.) yield and oil production in Northwest Ethiopia. Russian Agricultural Sciences, 49(4): 405-412. https://doi.org/10.3103/S1068367423040043
  6. Ban, Y. J., Song, Y. H., Kim, J. Y., Cha, J. Y., Ali, I., Baiseitova, A., Shah, A. B., Kim, W.-Y. y Park, K. H. 2021. A significant change in free amino acids of soybean (Glycine max L. Merr) through ethylene application. Molecules, 26(4): 1128. https://doi.org/10.3390/molecules26041128
  7. Baraki, F., Gebregergis, Z., Belay, Y., Berhe, M., Teame, G., Hassen, M., Gebremedhin, Z., Abadi, A., Negash, W., Atsbeha, A. y Araya, G. 2020. Multivariate analysis for yield and yield-related traits of sesame (Sesamum indicum L.) genotypes. Heliyon, 6(10): e05295. https://doi.org/10.1016/j.heliyon.2020.e05295
  8. Carciochi, W. D., Schwalbert, R., Andrade, F. H., Corassa, G. M., Carter, P., Gaspar, A. P., Schmidt, J. y Ciampitti, I. A. 2019. Soybean seed yield response to plant density by yield environment in North America. Agronomy Journal, 111(4): 1923-1932. https://doi.org/10.2134/agronj2018.10.0635
  9. Dravie, E. E., Kortei, N. K., Essuman, E. K., Tettey, C. O., Boakye, A. A. y Hunkpe, G. 2020. Antioxidant, phytochemical and physicochemical properties of sesame seed (Sesamum indicum L). Scientific African, 8: e00349. https://doi.org/10.1016/j.sciaf.2020.e00349
  10. Gholamhoseeini, M., Danaie, A. K. y Falah Tosi, A. 2022. The effect of planting pattern and plant density on grain yield and yield components of sesame (Sesamum indicum, L) in Mashhad region. Research Achievements for Field and Horticulture Crops, 11(1): 71-80. https://doi.org/10.22092/rafhc.2023.351299.1253
  11. Hasani, M., Faryabi, S., Ehsanzadeh, P. y Vaghar, M. 2023. Foliar-applied zinc enhances sesame physiological and yield attributes under different irrigation regimes. South African Journal of Botany, 162: 451-460. https://doi.org/10.1016/j.sajb.2023.09.008
  12. Hernández, A., Pérez, J. M., Bosch, D. y Castro, N. 2015. Clasificación de los suelos de Cuba. Publicado en formato digital (1.a ed.). Instituto Nacional de Ciencias Agrícolas.
  13. Hurtado, A. C., Díaz, Y. P., Calzada, K. P., Viciedo, D. O., Hernández, J. J. y Pérez, A. C. 2023. Coinoculación de biofertilizantes microbianos en pepino y habichuela y su efecto en el crecimiento y rendimiento. Temas Agrarios, 28(2): 220-232. https://doi.org/10.21897/bz3pzk58
  14. IUSS-WRB. 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. En World Soil Resources Reports, (106) (4.a ed.). https://doi.org/10.1017/S0014479706394902
  15. Kafi, M., Nabati, J., Rezazadeh, E. B., Oskoueian, A. y Soureshjani, H. K. 2022. Single and poly capsule sesame (Sesamum indicum L.) productivity in response to plant growth-promoting rhizobacteria and foliar application of silicon, potassium, and calcium. Acta Physiologiae Plantarum, 44(10): 103. https://doi.org/10.1007/s11738-022-03437-z
  16. Kemp, C. 1960. Methods of estimating the leaf area of grasses from linear measurements. Annals of Botany, 24(4): 491-499.
  17. Minag. 2020. Instructivo técnico para el cultivo del ajonjolí (1.a ed.). Ministerio de la Agricultura, Cuba.
  18. Parsaie, S., Movahhedi Dehnavi, M., Balouchi, H. R. y Attarzadeh, M. 2020. Improving sesame (Sesamum indicum L.) seed characteristics and vigor under drought stress by seed zinc and boron enrichment. Iranian Journal of Seed Science and Technology, 8(2): 113-126. https://doi.org/10.22034/ijsst.2018.110510.1088
  19. Peña Calzada, K., Olivera Viciedo, D., Habermann, E., Calero Hurtado, A., Lupino Gratão, P., De Mello Prado, R., Lata-Tenesaca, L. F., Martinez, C. A., Ajila Celi, G. E. y Rodríguez, J. C. 2022. Exogenous application of amino acids mitigates the deleterious effects of salt stress on soybean plants. Agronomy, 12(9): 2014. https://doi.org/10.3390/agronomy12092014
  20. Peña, K., Calero Hurtado, A., Viciedo, D., Rodríguez, J., Fernandes, T., García, R. y Ajila, G. 2021. Respuesta agroproductiva de Zea mayz L. con la aplicación foliar de VIUSID agro®. Revista de la Facultad de Agronomía, Universidad del Zulia, 38(3), 573-584. https://doi.org/10.47280/RevFacAgron(LUZ).v38.n3.06
  21. Repke, R. A., Silva, D. M. R., dos Santos, J. C. C. y de Almeida Silva, M. 2022. Alleviation of drought stress in soybean by applying a biostimulant based on amino acids and macro- and micronutrients. Agronomy, 12(10): 2244. https://doi.org/10.3390/agronomy12102244
  22. Ríos-Hilario, J. J., Maldonado-Peralta, M. de los Á., Rojas-García, A. R., Hernández-Castro, E., Sabino-López, J. E. y Segura-Pacheco, H. R. 2023. Comportamiento productivo del cultivo de soya variedad Salcer a diferentes densidades de población y momentos de cosecha. Revista Fitotecnia Mexicana, 46(1): 3-10. https://doi.org/10.35196/RFM.2023.1.3
  23. Simón, L. A. Y., Hurtado, A. C., Pérez, W. B. V. y Carvalho, L. B. 2023. Influencia de altas densidades de plantas en la productividad de la soya. Universidad & ciencia, 12(3): 155-166. https://doi.org/10.5281/zenodo.8371518
  24. Thuc, L. V., Thu, L. T. M., Huu, T. N., Nghi, P. H., Quang, L. T., Xuan, D. T., Xuan, L. N. T. y Khuong, N. Q. 2023. Effects of phosphorus fertilizers and phosphorus-solubilizing rhizosphere bacteria on soil fertility, phosphorus uptake, growth, and yield of sesame (Sesamum indicum L.) cultivated on alluvial soil in dike. Geomicrobiology Journal, 40(6): 527-537. https://doi.org/10.1080/01490451.2023.2204860
  25. Uebersax, M. A., Cichy, K. A., Gomez, F. E., Porch, T. G., Heitholt, J., Osorno, J. M., Kamfwa, K., Snapp, S. S. y Bales, S. 2023. Dry beans (Phaseolus vulgaris L.) as a vital component of sustainable agriculture and food security—A review. Legume Science, 5(1): e155. https://doi.org/10.1002/leg3.155
  26. Weldemichael, M. Y., Baryatsion, Y. T., Sbhatu, D. B., Abraha, G. G., Juhar, H. M., Kassa, A. B., Sibhatu, F. B., Gebremedhn, H. M., Gebrelibanos, T. S., Mossa, M. M., Berhe, B. D. y Gebru, H. A. 2022. Generating better leaf traits in M2 lines of fourteen Ethiopian sesame (Sesamum indicum L.) genotypes through the treatment of their seeds with sodium azide. Heliyon, 8(12): e11984. https://doi.org/10.1016/j.heliyon.2022.e11984

Sistema OJS 3.4.0.3 - Metabiblioteca |