Skip to main navigation menu Skip to main content Skip to site footer

Physiological and productive responses of sugar beet plants treated with amino acid solution

Respuestas fisiológicas y productivas de plantas de remolacha tratadas con una solución de aminoácidos



How to Cite
Peña Calzada, K., Calero Hurtado, A., Peistrup, V., Mühlmann, I., Rodríguez Miranda, D., Rodríguez Coca, L. I., Rodríguez González, M., & Rodríguez Fernández, J. C. (2024). Physiological and productive responses of sugar beet plants treated with amino acid solution. Sour Topics, 29(1), 113-125. https://doi.org/10.21897/pkxmyw03

Dimensions
PlumX
Kolima Peña Calzada
Alexander Calero Hurtado
Victoria Peistrup
Isabel Mühlmann
Danieya Rodríguez Miranda
Liuder I. Rodríguez Coca
Manuel Rodríguez González
Juan C. Rodríguez Fernández

The exponential growth of the world population makes it necessary to look for alternatives to increase food production. Amino acids are widely used to improve crop productivity, however, in table beet cultivation they are not widespread. Therefore, the objective of the research was to evaluate the effect of foliar application of an amino acid solution on the physiological indices and production of red beet. A randomized block experiment was designed with five treatments and six replications. Four concentrations of the amino acid solution VA1 (0.3 ml L-1), VA2 (0.6 ml L-1), VA3 (0.9 ml L-1), VA4 (1.2 ml L-1) were evaluated. 1) and a control treatment VA0 (0). The dry biomass of the plants, leaf area, growth rates, total chlorophyll content, leaf temperature, relative water content and agricultural yield were evaluated. The results showed lower growth and production when the amino acid solution was not used and a significant increase in the dry biomass of the plants when the solution was used in all its variants. Growth rates, chlorophyll content, as well as leaf temperature, were also benefited by amino acids. The highest productive efficiency was obtained with 0.6; 0.9- and 1.2-ml L-1 and the best performance response was at the 1.2 ml L-1 dose. Therefore, the foliar application of amino acids is an alternative to increase the growth and production of red beets.


Article visits 154 | PDF visits


Downloads

Download data is not yet available.
  1. Alfosea-Simón, M., Simón-Grao, S., Zavala-Gonzalez, E. A., Cámara-Zapata, J. M., Simón, I., Martínez-Nicolás, J. J., Lidón, V. y García-Sánchez, F. 2021. Physiological, Nutritional and Metabolomic Responses of Tomato Plants After the Foliar Application of Amino Acids Aspartic Acid, Glutamic Acid and Alanine. Frontiers in Plant Science, 11: 1-16. https://doi.org/10.3389/fpls.2020.581234
  2. Barrs, H. y Weatherley, P. 1962. A Re-Examination of the Relative Turgidity Technique for Estimating Water Deficits in Leaves. Australian Journal of Biological Sciences 15(3):413. https://doi.org/10.1071/bi9620413
  3. Biosci, I. J., Ullah, A., Ali, S., Ali, N., Shah, S. M., Amin, F., Ullah, A., Khan, S., Ullah, Z. y Biosci, I. J. 2019. Influence of foliar application of bio-stimulants on growth, yield and chemical composition of tomato. International Journal of Biosciences (IJB), 14(01):309-316. https://doi.org/10.12692/ijb/14.1.309-316
  4. EMBRAPA. 2018. Limpeza de Areia para Experimentos em Nutrição de Plantas. 232, 1-5.
  5. Furbank, R. T., Jimenez-Berni, J. A., George-Jaeggli, B., Potgieter, A. B. y Deery, D. M. 2019. Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops. In New Phytologist 223(4):1714-1727. https://doi.org/10.1111/nph.15817
  6. Gil-Ortiz, R., Naranjo, M. Á., Atares, S. y Vicente, O. 2023. Antioxidant Responses of Water-Stressed Cherry Tomato Plants to Natural Biostimulants. Agronomy 13(9): 8-10. https://doi.org/10.3390/agronomy13092314
  7. Hölzel, N., Close, D. C., Bound, S. A., Quin, P. R., Visentin, D. C. y Swarts, N. D. 2023. Uptake and Translocation of Foliar-Applied L-Proline in Sweet Cherry (Prunus avium L.). Agronomy 13(4):1-11. https://doi.org/10.3390/agronomy13040958
  8. Khan, S., Yu, H., Li, Q., Gao, Y., Sallam, B. N., Wang, H., Liu, P. y Jiang, W. 2019 Exogenous application of amino acids improves the growth and yield of lettuce by enhancing photosynthetic assimilation and nutrient availability. Agronomy 9(5). https://doi.org/10.3390/agronomy9050266
  9. Kheir, A. M. S., Ding, Z., Gawish, M. S., El Ghit, H. M. A., Hashim, T. A., Ali, E. F., Eissa, M. A., Zhou, Z., Al-harbi, M. S. y El-gioushy, S. F. 2021. The exogenous application of micro-nutrient elements and amino acids improved the yield, nutritional status and quality of mango in arid regions. Plants 10(10). https://doi.org/10.3390/plants10102057
  10. Khoshkharam, M., Shahrajabian, M. H. y Esfandiary, M. 2021. The effects of methanol and amino acid glycine betaine on qualitative characteristics and yield of sugar beet (Beta vulgaris l.) cultivars. Notulae Scientia Biologicae 13(2):1-13. https://doi.org/10.15835/nsb13210949
  11. Lakhdar, A., Trigui, M. y Montemurro, F. 2023. An Overview of Biostimulants’ Effects in Saline Soils. Agronomy 13(8): 1-26. https://doi.org/10.3390/agronomy13082092
  12. Lucini, L., Rouphael, Y., Cardarelli, M., Canaguier, R., Kumar, P. y Colla, G. 2015. The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Scientia Horticulturae 182:124-133. https://doi.org/10.1016/j.scienta.2014.11.022
  13. Majeed, A. y Muhammad, Z. 2019. Salinity: A major agricultural problem-causes, impacts on crop productivity and management strategies. In Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches 83-99. Springer International Publishing. https://doi.org/10.1007/978-3-030-06118-0_3
  14. Matysiak, K., Kierzek, R., Siatkowski, I., Kowalska, J., Krawczyk, R. y Miziniak, W. 2020. Effect of exogenous application of amino acids L-arginine and glycine on maize under temperature stress. Agronomy 10(6). https://doi.org/10.3390/agronomy10060769
  15. Mutale-Joan, C., Redouane, B., Najib, E., Yassine, K., Lyamlouli, K., Laila, S., Zeroual, Y. y Hicham, E. A. 2020. Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Scientific Reports 10(1):1-12. https://doi.org/10.1038/s41598-020-59840-4
  16. Nowak, R., Szczepanek, M., Błaszczyk, K., Kobus-Cisowska, J., Przybylska-Balcerek, A., Stuper-Szablewska, K., Pobereżny, J., Hassanpouraghdam, M. B. y Rasouli, F. 2023. Impact of the Farming System and Amino-Acid Biostimulants on the Content of Carotenoids, Fatty Acids, and Polyphenols in Alternative and Common Barley Genotypes. Agronomy 13(7). https://doi.org/10.3390/agronomy13071852
  17. Olivera-Viciedo, D., de Mello Prado, R., Martinez, C. A., Habermann, E., Branco, R. B. F., de Cássia Piccolo, M., Calero Hurtado, A., Peña Calzada, K. y Lata Tenesaca, L. F. 2021. Water stress and warming impact nutrient use efficiency of Mombasa grass (Megathyrsus maximus) in tropical conditions. Journal of Agronomy and Crop Science 207(1): 128-138. https://doi.org/10.1111/jac.12452
  18. Peña-Calzada, K., Olivera-Viciedo, D., Calero, A., Rodríguez, J. C., Kukurtcu B., Placencia Y. M. Á. y Castro A. S. 2019. Productive Response of Brassica rapa L. subsp. chinensis to Application of VIUSID Agro. Journal of Agricultural Science and Technology B 9(2):103-109. https://doi.org/10.17265/2161-6264/2019.02.003
  19. Peña-Calzada, K., Olivera-Viciedo, D., Habermann, E., Calero Hurtado, A., Lupino Gratão, P., De Mello Prado, R., Lata-Tenesaca, L. F., Martinez, C. A., Ajila Celi, G. E. yRodríguez, J. C. 2022. Exogenous Application of Amino Acids Mitigates the Deleterious Effects of Salt Stress on Soybean Plants. Agronomy 12(9):2014.https://doi.org/10.3390/agronomy12092014
  20. Peña, K., Calero-hurtado, A., Olivera-, D., Rodríguez, J. C., Fernandes, T. y Ajila, G. 2021. Technical note / Nota Técnica Respuesta agroproductiva de. Rev. Fac. Agron. (LUZ) 38(3):573–584.
  21. Peña, K., Rodríguez, J. C., Viciedo, D. O., Hurtado, A. C., Félix, J. y García, R 2018. Efecto de dosis de VIUSID Agro ® en el comportamiento morfo-fisiológico y productivo del rábano (Rev. Fac. Agron. (LUZ) 35(2):293–317.
  22. Queiroz, R. B., Bessa, L. A., Ávila, R. G., Augusto, D. S. S., Oliveira, M. S. yVitorino, L. C. 2023. Effect of Exogenous Tryptophan on Primary Metabolism and Oxidative Stress and Their Relationship with Seedling Germination and Vigor of Glycine Max L. Agronomy 13(6). https://doi.org/10.3390/agronomy13061609
  23. Rosa, R., Hajko, L., Franczuk, J., Zaniewicz-Bajkowska, A., Andrejiová, A. y Mezeyová, I. 2023. Effect of L-Tryptophan and L-Glutamic Acid on Carrot Yield and Its Quality. Agronomy, 13(2):1–23. https://doi.org/10.3390/agronomy13020562
  24. Rouphael, Y. y Colla, G. 2018. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Frontiers in Plant Science 871: 1–7. https://doi.org/10.3389/fpls.2018.01655
  25. R Core Team. 2019. “R: A language and environment for statistical computing, 2015.” (p. 4). http://www.r-project.org/
  26. Ugolini, L., Malaguti, L., Matteo, R., Pagnotta, E., Beleggia, R. y Righetti, L. 2023. Protein Hydrolysates from Crambe abyssinica Seed Cake as Potential Biostimulants for Root Development. Agronomy 13(11):1–19. https://doi.org/10.3390/agronomy13112755
  27. Wu, J., Chen, S., Ruan, Y. y Gao, W. 2023. Combinatorial Effects of Glycine and Inorganic Nitrogen on Root Growth and Nitrogen Nutrition in Maize (Zea mays L.). Sustainability (Switzerland) 15(19) https://doi.org/10.3390/su151914122

Sistema OJS 3.4.0.3 - Metabiblioteca |