Skip to main navigation menu Skip to main content Skip to site footer

Products of nitrate assimilation are deposited in plants as storage proteins

Productos de la asimilación del nitrato se depositan en las plantas como proteínas de almacenamiento



How to Cite
Cordero, C., & Jarma Orozco, A. D. jesus. (2011). Products of nitrate assimilation are deposited in plants as storage proteins. Sour Topics, 16(1), 9-22. https://doi.org/10.21897/rta.v16i1.680

Dimensions
PlumX
Carina Cordero
Alfredo De jesus Jarma Orozco

Assimilation of inorganic nitrogen in ammonium form, in carbon skeletons, for amino acid production, is one of the most important biochemical processes in plants. While the products of CO2 assimilation are deposited in oligo and polysaccharides form in plants, amino acids formed as products of nitrate assimilation are stored as proteins. These are mainly storage proteins, which have not enzymatic activity, are synthesized in the rough endoplasmic reticulum and often are deposited in the cell within protein bodies. According to their solubility properties, proteins can be albumins (soluble in pure water), globulins (soluble in diluted salt solutions), glutelins (soluble in alkali and acid diluted solutions) and prolamins (soluble in aqueous ethanol). However, when the protein structures were determined, glutelins and prolamins were closely related. Therefore, glutelins are considered members of the prolamins. Overall, these proteins, also have storage function in different plant species where are deposited, protect seeds from attack by insect pests and pathogens, and are completely degraded by proteinases and peptidases in the vacuole, where the released amino acids are provided as a construction material for plant germination. This review is planned to recognize the major storage proteins and their role in different plant species in which they are presented, emphasizing that the globulins are the most abundant in nature.


Article visits 1222 | PDF visits


Downloads

Download data is not yet available.
  1. Bethke, P., Swanson, S., Hillmer, S. y Jones, R. 1998. From Storage Compartment to Lytic Organelle: The Metamorphosis of the Aleurone Protein Storage Vacuole. Plant Physiology. 82: 399-412.
  2. Buyukpamukcu, E., Goodall, D., Hansen, C., Keely, B., Kochhar, S. y Wille, H. 2001. Characterization of peptides formed during fermentation of cocoa bean. J. Agric. Food Chem. 49 (12): 5822-5827.
  3. Chrispeels, M.J. y Herman, E. M. 2000. Endoplasmic Reticulum-Derived Compartments Function in Storage and as Mediators of Vacuolar Remodeling via a New Type of Organelle, Precursor Protease Vesicles. Plant Physiology. 123 (4):1227-1234.
  4. Chung, T., Kim, C., Nguyen, H. N., Meeley, R. B. y Larkins, B. A. 2007. The Maize Zmsmu2 Gene Encodes a Putative RNA-Splicing Factor That Affects Protein Synthesis and RNA Processing during Endosperm Development. Plant Physiology. 144 (2):821-835.
  5. Colin, J. 2009. Composición del inóculo (Lb. plantarum, Lb, brevis y Lb. sanfranciscensis) y su efecto en las propiedades viscoelasticas de las masas agrias. Tesis de grado de Maestría. Instituto politécnico nacional CICATAIPN. Mexico D.F. Pag 59.
  6. Coria, N.A., Perez, A., Sarquís, J.I., Cantú, I., Gonzalez, H. y Gómez, M.V. 2004. Regeneración de la planta de papa (Solanum tuberosum l) in vitro a partir del estolón. Ciencia UANL. VII (003): 361-370.
  7. Cossegal, M., Chambrier, P., Mbelo, S., Balzergue, S., Martin-Magniette, M.L., Moing, A., Deborde, C., Guyon, V ., Perez, P. y Rogowsky, P. 2008. Transcriptional and Metabolic Adjustments in ADPGlucose Pyrophosphorylase-Deficient bt2 Maize Kernels. Plant Physiology. 146 (4): 1553-1570.
  8. Dam, S., Laursen, B. S., Ørnfelt, J.H., Jochimsen, B., Stærfeldt, H.H., Friis, C., Nielsen, K., Goffard, N., Besenbacher, S., Krusell, L., Sato, S., Tabata, S., Thøgersen, I.B., Enghild, J. J., y Stougaard, J. 2009. The Proteome of Seed Development in the Model Legume Lotus japonicus. Plant Physiology. 149 (3):1325-1340.
  9. Díaz, P., Dalla, M., Vázquez, D. y Castro, M. 2006. Elementos de Análisis Cualitativo y Cuantitativo en Proteínas del Gluten de Trigo. Agricultura Técnica. 66 (4):360-369.
  10. Espitia, E., Martínez, E., Peña, R.J., Villaseñor, H. E., Huerta, J. 2008. Polimosrfismo de gluteninas de alto peso molecular y su relación con trigos harineros para temporal. Agricultura técnica en México. 34(001): 57-67.
  11. Ferreira, M. y Correa, E. M. 2004. Recognition of n-acetylglucosamine (GlyNac) and poly-n-acetyllactosamine residues in vessels of the rat pineal gland. Int. J. Morphol. 22 (4).
  12. Gaur, V., Qureshi, I. A., Singh, A., Chanana, V. y Salunke, D. M. 2010. Crystal Structure and Functional Insights of Hemopexin Fold Protein from Grass Pea. Plant Physiology. 152 (4):1842-1850.
  13. Gavazzi, F., Lazzari, B., Ciceri, P., Gianazza, E. y Viotti, A. 2007. Wild-Type Opaque and Defective opaque Polypeptides Form Complexes in Maize Endosperm Cells and Bind the Opaque2-Zein Target Site. Plant Physiology. 145 (3):933-945.
  14. Gianibelli, M.C., Larroque, O.R., Macritchie, F. and Wrigley, C.W. 2001. Biochemical, genetic, and molecular characterization of wheat endosperm proteins. AACC, Inc. Disponible en http://www.aaccnet.org/ cerealchemistry/freearticle/gianibelli. pdf. [1 Septiembre 2010].
  15. Heldt, H. y Heldt F. 2005. Plant Biochemistry. Hans. 2005 Editorial Coordinator Kelly Sonnack. p 353-360. Herman, E. y Larkins, B. 1999. Protein Storage Bodies and Vacuoles Climate Stress Laboratory. The Plant Cell. 11 (4): 601– 614.
  16. Hernández, P., Perez, E., Martínez, L., Ortiz, B. y Martínez, G. 2005. Las lectinas vegetales como modelo de estudio de las interacciones proteina carbohidrato. Revista de educación bioquimica. 24 (001):21-27.
  17. Jerkovic, A., Kriegel, A. M., Bradner, J.R., Atwell, B. J., Roberts, T.H. y Willows, R.D. 2010. Strategic Distribution of Protective Proteins within Bran Layers of Wheat Protects the Nutrient-Rich Endosperm. Plant Physiology. 152 (3):1459-1470.
  18. Jiang, L., Phillips, T., Hamm, C., Drozdowicz, Y., Rea, P., Maeshima, M., Rogers, S. y Rogers, J. 2001. The protein storage vacuole: a unique compound organelle. The Journal of Cell Biology. 155 (6):991- 1002.
  19. Jobet, C. y Hewstone, C. 2003. Kumpa-inia: nueva variedad de trigo invernal para el sur de Chile. Agricultura Técnica. 63(1): 81-86.
  20. Kawakatsu, T., Hirose, S., Yasuda, H. y Takaiwa, F. 2010. Reducing Rice Seed Storage Protein Accumulation Leads to Changes in Nutrient Quality and Storage Organelle Formation. Plant Physiology. 154 (4):1842-1854.
  21. Kawaura, K., Mochida, K. y Ogihara, Y. 2005. Expression Profile of Two StorageProtein Gene Families in Hexaploid Wheat Revealed by Large-Scale Analysis of Expressed Sequence Tags. Plant Physiology. 139 (4):1870-1880.
  22. Lancien, M., Gadal, P. y Hodges, M. 2000. Enzyme Redundancy and the Importance of 2-Oxoglutarate in Higher Plant Ammonium Assimilation. Plant Physiology. 123 (3):817-824.
  23. Liu, Y., Ahn, J., Datta, S., Salzman, R.A., Moon, J., Huyghues-Despointes, B., Pittendrigh, B., Murdock, L.L., Koiwa, H. y Zhu-Salzman, K. 2005. Arabidopsis Vegetative Storage Protein Is an Anti-Insect Acid Phosphatase. Plant Physiology. 139: 1545-1556.
  24. López, B.L., Marcelo, L., Vidueiros, S.M., Pallaro, A., Valencia, M.E. 2010. Determinación del contenido de gliadinas en alimentos elaborados con amaranto, quínoa y/o chía. Revista Chilena de Nutrición. 37(1):80-86.
  25. Loponen, J., Sontag-Strohm, T., Venalainen, J. y Salovaara, H. 2007. Prolamin hydrolysis in wheat sourdoughs with differing proteolytic activities. Journal of Agricultural and Food Chemistry. 55 (3):978-984.
  26. Martínez, E., Espitia, E., Benítez, I., Peña, R. J., Santacruz, A. y Villaseñor, H. E. 2007. El complejo Gli-1/Glu-3 y las propiedades reológicas y volumen de pan de trigos harineros. Revista Fitotecnia Mexicana. 30(002):167-172.
  27. Mechin, V., Thevenot, C., Guilloux, M.L., Prioul, J.L. y Damerval, C. 2007. Developmental Analysis of Maize Endosperm Proteome Suggests a Pivotal Role for Pyruvate Orthophosphate Dikinase. Plant Physiology. 143 (3):1203–1219.
  28. Molina, M.I., Otegui, M. y Petruccelli, S. 2006. Sunflower storage proteins are transported in dense vesicles that contain proteins homologous to the pumpkin vacuolar sorting receptor 72. Electronic Journal of Biotechnology. 9 (3):326-330.
  29. Müntz, K., Belozersky, M., Dunaevsky, Y., Schlereth, A. y Tiedemann, J. 2001. Stored proteinases and the initiation of storage protein mobilization in seeds during germination and seedling growth. Journal of Experimental Botany. 52 (362): 1741-1752.
  30. Müntz, K. 2007. Protein dynamics and proteolysis in plant vacuoles. Journal of Experimental Botany. 58 (10):2391-2407.
  31. Olán, M., Espitia, E., Molina, J. D., Peña, R. J., SantaCruz, A. y Villaseñor, H. E. 2006. Efecto de diferentes subunidades de gluteninas APM sobre la calidad panadera en trigos harineros mexicanos. Revista fitotecnia mexicana. 29 (004): 291-297.
  32. Olbrich, A., Hillmer, S., Hinz, G., Oliviusson, P. y Robinson, D. G. 2007. Newly Formed Vacuoles in Root Meristems of Barley and Pea Seedlings Have Characteristics of Both Protein Storage and Lytic Vacuoles. Plant Physiology. 145 (4):1383-1394.
  33. Ortiz, L., Maldonado, H., Parra, P. y Graziani, L. 2006. Caracterización electroforética de las globulinas del grano fermentado de tres tipos de cacao. Interciencia. 31(006):441-445.
  34. Osborne, T. 1924. The Vegetable Proteins. Longmans, Green and Co, London, p125.
  35. Park, M., Kim, S., Vitale, A. y Hwang, I. 2004. Identification of the Protein Storage Vacuole and Protein Targeting to the Vacuole in Leaf Cells of Three Plant Species. Plant Physiology. 134 (2):625- 639.
  36. Peralta, M. E. 2004. Caracterización bioquimica de las proteinas de la semillas de Jatropha Curcas L. Tesis Maestro en ciencias, Instituto Politécnico Nacional, Yautepec Morelos.
  37. Pereira, M., Rodrigues, I., Grossi-de-Sa, M. F. y Xavier-Filho, J. 2000. Do Legume Storage Proteins Play a Role in Defending Seeds against Bruchids?. Plant Physiology. 124 (2):515-522.
  38. Peumans, W. J., Proost, P., Swennen, R.L. y Van Damme, J.M. 2002. The Abundant Class III Chitinase Homolog in Young Developing Banana Fruits Behaves as a Transient Vegetative Storage Protein and Most Probably Serves as an Important Supply of Amino Acids for the Synthesis of Ripening-Associated Proteins. Plant Physiology. 130 (2):1063-1072.
  39. Ramos, O.J. 2009. Detección de péptidos de lupino similares a lunasina de soya. Tesis Maestro en Ciencias. Instituto Politécnico Nacional, Yautepec Morelos.
  40. Rocha, G. F., Fernández, G. y Parisi, M.G. 2010. Estudios de Caracterización Cinética y Fisicoquímica de una Proteinasa Aspártica Aislada de Frutos Maduros de Salpichroa origanifolia. Información Tecnológica. 21 (2):21-28.
  41. Rolletschek, H., Hosein, F., Miranda, M., Heim, U., Gotz, K. P., Schlereth, A., Borisjuk, L., Saalbach, I., Wobus, U. y Weber, H. 2005. Ectopic Expression of an Amino Acid Transporter (VfAAP1) in Seeds of Vicia narbonensis and Pea Increases Storage Proteins. Plant Physiology. 137:1236-1249.
  42. Sabelli, P. A. y Larkins, B.A. 2009. The Development of Endosperm in Grasses. Plant Physiology. 149 (1):14-26.
  43. Sales MP, Macedo MLR, Xavier-Filho J. 1992. Digestibility of cowpea (Vigna Unguiculata) vicilins by pepsin, papain and bruchid midgut proteinases. Comparative Biochemistry and Physiology - Part B. 103 (4):945-950.
  44. Scott, N. 2008. Domain duplication, Darwinian selection and the origins of the seed storage globulins. Thesis Master of Science, Brigham Young University. Provo Utah. Thompson, R., Burstin, J. y Gallardo, K. 2009. Post-Genomics Studies of Developmental Processes in Legume Seeds. Plant Physiology. 151 (3):1023-1029.
  45. Torres, E., Gonzalez-Melendi, P., Stoger, E., Shaw, P., Twyman, R.M., Nicholson, L., Vaquero, C., Fischer, R., Christou, P. y Perrin, Y. 2001. Native and Artificial Reticuloplasmins Co-Accumulate in Distinct Domains of the Endoplasmic Reticulum and in Post-Endoplasmic Reticulum Compartments. Plant Physiology. 127 (3):1212-1223.
  46. Wieser, H. 2007. Chemistry of Gluten proteins. Food Microbiology. 24 (2): 115-119.
  47. Wu, Y. y Messing, J. 2010. RNA InterferenceMediated Change in Protein Body Morphology and Seed Opacity through Loss of Different Zein Proteins. Plant Physiology. 153 (1):337-347.
  48. Yamakawa, H., Hirose, T., Kuroda, M. y Yamaguchi, T. 2007. Comprehensive Expression Profiling of Rice Grain Filling-Related Genes under High Temperature Using DNA Microarray. Plant Physiology. 144 (1):258-277.
  49. Zerené, M., Granger, D., Prehn, D., y Hinrichsen, P. 2000. Secuencias de microsatélites asociadas a genes de proteínas de reserva en variedades chilenas de trigo harinero: descripción y posible uso como marcadores de calidad panadera. Agricultura Técnica. 60 (1):14-31.
  50. Zhu, B. y Coleman, G. 2001. PhytochromeMediated Photoperiod Perception, Shoot Growth, Glutamine, Calcium, and Protein Phosphorylation Influence the Activity of the Poplar Bark Storage Protein Gene Promoter (bspA).Plant Physiology. 126 (1):342-351.
  51. Zhu-Salzman, K., Luthe, D.S. y Felton, G. W. 2008. Arthropod-Inducible Proteins: Broad Spectrum Defenses against Multiple Herbivores. Plant Physiology. 146 (3):852-858.

Sistema OJS 3.4.0.3 - Metabiblioteca |