Skip to main navigation menu Skip to main content Skip to site footer

Correlation among yield, phenotipic stability and simultaneus selection in cotton (Gossypium hirsutum L.)

Correlación entre rendimiento, estabilidad fenotípica y métodos de selección simultánea en algodón (Gossypium hirsutum L.)



How to Cite
Sierra Naranjo, C. M., Espitia Camacho, M. M., & Cadena Torres, J. (2017). Correlation among yield, phenotipic stability and simultaneus selection in cotton (Gossypium hirsutum L.). Sour Topics, 22(1), 19-28. https://doi.org/10.21897/rta.v22i1.912

Dimensions
PlumX
Carlos Mario Sierra Naranjo
Miguel Mariano Espitia Camacho
Jorge Cadena Torres

Yield and phenotypic stability are necessary to release new cultivars. The aim of this study was to estimate the linear and rank correlation between fiber yield (RENFI), six stability indices: S2 i (Roemer), σ2 va (Plaisted and Peterson), bi and S2 di (Eberhart and Russell), Wi (Wricke), σ2 i (Shukla), and four simultaneous selection indexes by RENFI and stability: Pi (Lin and Binns), ER and SH (Eskridge) and Si (1) (Huehn) in 10 cotton genotypes evaluated through six environments in humid Colombian Caribbean. A randomized complete block design was used for each environment. The combined variance analysis showed highly significant differences for environments and GxA interaction. RENFI did not correlate linearly with stability indices, whereas between selection indices only SH presented a significant association level (r>-0.43), except SH (r=0.65*). The six stability indices showed positive and significant linear correlation between all (r≥0.71*) except bi , which only was correlated with S2 i (r=0.96**). RENFI only showed rank correlation (rs =0.76**) with S2 i . The σ2 va index showed significant and positive rank correlation (rs >0.68) with S2 di , σ2 i , Wi , ER and SH. The ranking for stability of genotypes was equal and perfect (rs =1.0**) when used σ2 va, S2 di , σ2 i and Wi . The rank correlation between simultaneous selection indices was only similar (rs >0.82**) between ER, SH and Pi. The simultaneous selection indices ER and SH favored selection, preferentially, for stability given its rs >0.66 significant and direct with σ2 va, S2 di , σ2 i and Wi .

Article visits 1050 | PDF visits


Downloads

Download data is not yet available.
  1. Abate, F., Mekbib, F. and Dessalegn, Y. 2015. Association of Different Parametric and Non parametric Stability Models in Durum Wheat (Triticum turgidum Desf.) Genotypes. International Journal of Plant & Soil Science. 7(4):192-201.
  2. Abbott, L. and Pistorale, S. 2011. Análisis de la estabilidad y adaptabilidad de caracteres de interés agronómico en genotipos selectos de cebadilla criolla (Bromus catharticus). Agriscientia. 28(2):109-117.
  3. Becker, H.C. 1981. Correlations among some statistical measures of phenotypic stability. Euphytica 30: 835-840. Conalgodón,
  4. Confederación Colombiana del Algodón. 2015. Informe Cosecha Nacional – Julio 2015. http://conalgodon.com/wp-content/uploads/2015/12/201507- Informe-Cosecha-Nacional.pdf (20 jun 2016).
  5. Cruz, C. 2013. Programa Genes V. 2013, 5.1. - Aplicativo computacional em genética e estatística. http://www.ufv.br/dbg/genes/ genes.htm [22 sep 2013].
  6. Dewdar, M. 2013. Stability analysis and genotype x environment interactions of some Egyptian cotton cultivars cultivated. African Journal of Agricultural Research. 8(41):5156-5160.
  7. Dehghani, H., Sabaghpour, S. and Sabaghnia, N. 2008. Genotype × environment interaction for grain yield of some lentil genotypes and relationship among univariate stability statistics. Spanish J. Agric. Res. 6(1):385–394.
  8. Eberhart, A. and Russel, W. 1966. Stability parameters for comparing varietes. Crop. Sci. 6(1):36-40. Eskridge, K. 1990. Selection of stable cultivars using a safety-first rule. Crop. Sci. 30(2):369-374.
  9. Espitia, M. 2013. Importancia de la adaptabilidad y estabilidad fenotípica en la liberación comercial de nuevas variedades de fríjol caupí. En Primera Jornada Tecnológica Internacional Sobre Fríjol Caupí. Memorias en CD. Montería, Universidad de Córdoba, noviembre/28-29/2013.
  10. Espitia, M., Araméndiz, H. y Arrieta, P. 2003. Selección simultanea por altos rendimientos y estabilidad de genotipos de frijol caupí (Vigna unguiculata L.). Rev. Fitotecnia Colombiana. 3(1):17–22.
  11. Espitia, M., Araméndiz, H. y Mendoza, A. 1993. Selección simultánea de genotipos de algodón por altos rendimiento y estabilidad. Revista ICA. 28(1):227-234.
  12. Farshadfar, E., Sabaghpour, S. and Zali, H. 2012. Comparison of parametric and nonparametric stability statistics for selecting stable chickpea (Cicer arietinum L.) genotypes under diverse environments. Australian Journal of Crops Science. 6(3):514-524.
  13. Farshadfar, E., Mahtabi, E., Mahdi, and M. 2013. Assessment of parametric stability statistics for selecting stable Chickpea genotypes. International Journal of Agriculture and Crop Sciences. 5(21):2568-2575. Galindo, J. 1992. Análisis de estabilidad fenotípica mediante el sistema SAS. Revista ICA. 27(1):4961-4962.
  14. Gedif, M., Yigzaw, D. and Tsige, G. 2014. Genotype-environment interaction and correlation of some stability parameters of total starch yield in potato in Amhara region, Ethiopia. Journal of Plant Breeding and Crop Science. 6(2):31-40.
  15. Gomez, G., Uneda-Trevisoli, S., Pinheiro, J. and Di Mauro, A. 2014. Adaptive and agronomic performances of soybean genotypes derived from different genealogies through the use of several analytical strategies. African Journal Agricultural Research. 9(28):2146-2157.
  16. González, T., Monteverde, E., Marín, C. y Madríz, P. 2007. Comparación de tres métodos para estimar estabilidad del rendimiento en nueve variedades de algodón. Interciencia. 32(5):334-348.
  17. González, A., Pérez, D., Sahagún, J., Franco, O., Morales, E., Rubí, M., Gutiérrez, F. y Balbuena, A. 2010. Aplicación y comparación de métodos univariados para evaluar la estabilidad en maíces del valle Toluca Atlacomulco, México. Agronomía Costarricense. 34(2):129-143.
  18. Huehn, M. 1990. Nonparametric measures of phenotypic stability. Part 1: Theory, Euphytica. 47(1):189-194. Kang, M. and Pham, H. 1991. Simultaneous selection for high yielding and stable crop genotypes. Agron. Journal. 83(1): 161-165.
  19. Karimizadeh, R., Mohammadi, M., Sabaghnia, N., Shefazadeh, M. and Pouralhossini, J. 2012. Univariate stability analysis methods for determining genotype × environment interaction of durum wheat grain yield. African J. Biotech. 11(1):2563–2573.
  20. León, J. 1986. Methods of simultaneous estimation of yield and yield stability. In: Biometrics in Plant Breeding. Proc. 6th Meeting. Eucarpia, section Biometrics in Plant Breeding, Birmingham: 299-308.
  21. Lin, C., Binns, M., and Lefkovitch, L. 1986. Stability analysis: where do we stand? Crop Sci. 26(1):894–900. Lin, C. and Binns, M. 1988. A method of analyzing cultivar x location x year experiments: a new stability parameter. Theor. Appl. Gene. 76(3):425-430.
  22. Liu, Y., Hu, W., Yuan-qi, W., and Yu-bi, H. 2011. Yield Stability of Maize Hybrids Evaluated in National Maize Cultivar Regional Trials in Southwestern China Using Parametric Methods. Agricultural Sciences in China. 10(9):1323-1335.
  23. Mahendra, D. 2012. Genotype x Environment Interaction and Stability analysis of Performance in Watermelon. Partial fulfillment of the requirements for the degree of Doctor of Philosophy Horticultural Science Raleigh, North Carolina State University, North Carolina, 94p.
  24. Mahommadi, R., Aghaee, M., Haghparast, R., Pourdad, S., Rostaii, M., Ansari, Y., Abdolahi, A. and Amri, A. 2009. Association among non-parametric measures of phenotypic stability in four annual crops. Middle Eastern and Russian Journal of Plant Science and Biotechnology. Special issue. 3(1):20-24.
  25. Mohammadi, M.; Karimizadeh, R.; Sabaghnia, N.; Shefazadeh, K. 2012. Genotype environment interaction and yield stability analysis of new improved bread wheat genotypes, Turkish Journal of Field Crops, 2012, 17(1): 67-73.
  26. Plaisted, R. and Peterson, L. 1959. A technique for evaluating the ability of selections to yield consistence in different locations or seasons. American Potato Journal. 36(1):381-385.
  27. Rea, R., De Sousa-Vieira, O., Díaz, A., Ramón, M., Briceño, R., George, J. and Demey, J. 2015. Assessment of yield stability in sugarcane genotypes using non-parametric methods. Agronomía Colombiana. 33(2):131-138.
  28. Roemer, J. 1917. Sinde die ertagdreichen Sorten ertagissicherer. Mitt DLG, 32(1):87-89.
  29. Sabaghnia, N., Mohammadi, M. and Karimizadeh, R. 2013. Yield stability of performance in multi environment trials of barley (Hordeum vulgar L.) genotypes. Acta Universitatis Agriculturae et Silviculturae Mendeliane Brunensis. 61(3):787-793.
  30. Sahin, E., Zeinalzadeh, T. and Tosun, M. 2012. Genotype by environment interaction and stability analysis of orchardgrass (Dactylis glomerata L.) ecotypes for seed yield in Erzurum, Turkey. International Journal of Agriculture and Crops Sciences. 4(2):45-50.
  31. Shukla, 1972. Some statistical aspects of partitioning genotype - enviromental components of variability. Heredity. 29(1):237-245.
  32. Sierra, C. 2014. Análisis de estabilidad fenotípica y genealógico para la selección de líneas promisorias de algodón (Gossypium hirsutum L.) para el Caribe Húmedo. Trabajo de grado de maestría en Ciencias Agronómicas, área de formación en Fitomejoramiento. Facultad de Ciencias Agrícolas. Universidad de Córdoba. 189p.
  33. Steel, M. and Torrie, J. 1980. Principles and procedures of statistics. McGraw-Hill. New York, United States. 633p. Tadege, M.,
  34. Utta, H. and Aga, A. 2014. Association of statistical methods used to explore genotypic x environment interaction (GEI) and cultivar stability. African Journal Agricultural Research. 9(29):2231-2237.
  35. Vange, T., Ango, I. and Adedzwa, D. 2014. Stability Analysis of Six Improved Sorghum Genotypes across Four Environments in the Southern Guinea Savanna Agroecological Zone of Nigeria. International Journal of Advances in Agricultural Science and Technology. 2(2):01-14.
  36. Vargas, E., Vargas, J. and Baena, D. 2016. Análisis de estabilidad y adaptabilidad de híbridos de maíz de alta calidad proteica en diferentes zonas Agroecológicas de Colombia. Acta Agron. 65(1):72-79.
  37. Vertel, M., Espitia, M. y Martinez, R. 1999. Comparación de ocho índices para determinar estabilidad fenotípica en algodón (Gossypium hirsutum L). Agronomía Colombiana. 16(1-3):30-34. Wricke, G. 1962. On a method of understanding the biological diversity in field research.Z. Pflanzenzucht. 47(1):92–96.

Sistema OJS 3.4.0.3 - Metabiblioteca |