Skip to main navigation menu Skip to main content Skip to site footer

Development of molecular markers for the Eucalyptus species identification

Desarrollo de marcadores moleculares para la identificación de especies de Eucalyptus



How to Cite
Rivera Jiménez, H. J., Rossini, B. C., Leiter, V. do S., Da Silva, P. H., & Marino, C. L. (2017). Development of molecular markers for the Eucalyptus species identification. Sour Topics, 22(2), 32-41. https://doi.org/10.21897/rta.v22i2.942

Dimensions
PlumX
Hernando Javier Rivera Jiménez
Bruno C. Rossini
Vanusa do S. Leiter
Paulo H Da Silva
Celso L. Marino

One of the main problems faced in several eucalypt breeding programs is the difficulty to identify the species and hybrids. This study aimed to find molecular markers associated with five species of Eucalyptus (E. saligna, E. tereticornis, E. urophylla, E. grandis and E. brassiana), by AFLP (Amplified Fragment Length Polymorphism)  markers and BSA (Bulk Segregant Analysis), for their use in breeding programs in Brazil. In 33 primer combinations, a total of 868 polymorphic fragments was obtained, which represent a 91.65% of polymorphism. The best combinations that show potential markers for species identification were the primers M + GGT / E + ACC, which was linked to 70% of E. urophylla individuals. However, primer combination composed of M+GGA/E+ACC identified 60% of individuals in the E. saligna species; combination by the primers M+GTC/E+AAC, confirmed two marks, one in 60% and the other in 50% of E. grandis individuals in the identification test. The treatment composed by the primers M+GGC/E+AAA, was confirmed in only 30% of E. brassiana individuals, being the same for the combination M+GGC/E+ACC primers, identifying 30% of E. tereticornis individuals. The AFLP analysis and BSA provide a quick tool for the identification of cultivars in Eucalyptus and can also be used to assist forest breeding programs.


Article visits 1197 | PDF visits


Downloads

Download data is not yet available.
  1. Ballesta, P., Mora, F., Contreras-Soto, R. I., Ruiz, E. and Perret, S. 2015. Analysis of the genetic diversity of Eucalyptus cla-docalyx (sugar gum) using ISSR markers. Acta Scientiarum. Agronomy, 37(2): 133. https://doi.org/10.4025/actasciagron.v37i2.19307.
  2. Barbour, R., Potts, B and Vaillancourt, R. 2005. Pollen dispersal from exotic Eucalyptus plantations. Cons. Genet. 6: 253–257. https://doi.org/10.1007/s10592-004-7849-z
  3. Blanco, M. and Valverde, R. 2005. Análisis de segregantes agrupados (BSA) para la deteccion de AFLPS ligados al GEN de resistencia a PVX Solanum commersonii. Agronomia Costarricense, 29(2): 45–55.
  4. Brondani, R., Brondani, C., Tarchini, R. and Grattapaglia, D. 1998. Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theo App Gen, 97: 816-827. https://doi.org/10.1007/s001220050961.
  5. Creste, S., Tulmann Neto, A. and Figueira, A. 2001. Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Molecular Biology Reporter, 19: 299-306. https://doi.org/10.1007/BF02772828.
  6. Denison, N. and Kietzka, J. 1993. The use and importance of hybrid intensive forestry in South Africa. South Afri Fore J 165: 55- 60. https://doi.org/10.1080/00382167.1993.9629390.
  7. Domingues, D. S., Cazerta, A., Costrato, V., José, D. Oda, S., Marino, C. L. and Marino, L. 2006. Identificação de marcador RAPD e SCAR relacionados ao caractere florescimento precoce em Eucalyptus grandis. Ciência Florestal, 16(3): 251–260. Retrieved from http://doi.org/10.5902/198050981906.
  8. Doyle, J. and Doyle, J. 1990. Isolation of plant DNA from fresh tissue. Focus, 12: 13–15.
  9. Forrester, D. I. and Smith, R. 2012. Faster growth of Eucalyptus grandis and Eucalyptus pilularis in mixed-species stands than monocultures. Forest Ecology and Management, 286: 81–86. https://doi.org/10.1016/j.foreco.2012.08.037.
  10. Fuchs, M., Lourenção, J., Tambarussi, E., Bortoloto, T., Oda, S., Nogueira, F. and Marino, C. 2011. Genome characterization of a Eucalyptus natural mutant. BMC Proceedings, 5(7): 65. https://doi.org/10.1186/1753-6561-5- S7-P65.
  11. Gonçalves, J., Alvares, C., Higa, A., Silva, L., Alfenas, A., Stahl, J. and Epron, D 2013. Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. Forest Ecology and Management, 301: 6–27. https://doi.org/10.1016/j.foreco.2012.12.030.
  12. Grattapaglia, D. and Kirst, M. 2008. Eucalyptus applied genomics: from gene sequences to breeding tools. The New Phytologist, 179(4): 911–29. https://doi.org/10.1111/j.1469-8137.2008.02503.x.
  13. Grattapaglia, D., Ribeiro, V. and Rezende, G. 2004. Retrospective selection of elite parent trees using paternity testing with microsatellite markers: an alternative short term breeding tactic for Eucalyptus. TAG Theoretical and Applied Genetics, 109(1): 192–199. https://doi.org/10.1007/s00122-004-1617-9.
  14. Guthridge, K., Dupal, M., Kölliker, R., Jones, E., Smith, K. and Forster, J. 2001. AFLP analysis of genetic diversity within and between populations of perennial ryegrass (Lolium perenne L.). Euphytica, 122: 191–201. https://doi.org/10.1023/A:1012658315290.
  15. Harwood, C. 2011. New introductions - doing it right. In Developing a eucalypt resource. Learning from Australia and elsewhere. Ed. J. Walker. Wood Technology Research Centre, University of Canterbury, Christchurch, New Zealand: 125–136
  16. Herrmann, D., Boller, B., Widmer, F. and Kölliker, R. 2005. Optimization of bulked AFLP analysis and its application for exploring diversity of natural and cultivated populations of red clover. Genome / National Research Council Canada = Génome / Conseil National de Recherches Canada, 48(3): 474–86. https://doi.org/10.1139/g05-011.
  17. IBA. Indústria Brasileira de árvores- iba. 2015. Available online: http://www.iba.org/shared/iba_2014_pt.pdf. (accessed on 23 april 2017).
  18. Ishii, K. 2009. DNA Markers in Eucalyptus with emphasis on species identification. Environment Control in Biology, Tokyo, 47 (1): 1-11.
  19. Jones, R., McKinnon, G., Potts, B. and Vaillancourt, R. 2005. Genetic diversity and mating system of an endangered tree Eucalyptus morrisbyi. Austra J Bot 53: 367-377. https://doi.org/10.1071/BT04182.
  20. Jones, M., Shepherd, M., Henry, R. and Deves, A. 2008. Pollen flow in Eucalyptus grandis determined by paternity analysis using microsatellite markers. Tree Genet. Geno. 4: 37–47. https://doi.org/10.1007/s11295-007-0086-0.
  21. Kolliker, R., Jones, E. Jahufer, M. and Forster, J. 2001. Bulked AFLP analysis for the assessment of genetic diversity in white clover (Trifolium repens L.). Euphytica, 121(3): 305–315. Retrieved from ://000171802500012
  22. Leite, V., Santos O., Sagawa, C., Gonzalez, E., Fagundes, M., Oda, S. and Marino, C. 2011. Identification of genomic regions related to early flowering in Eucalyptus. BMC Proceedings, 5(7):53. http://doi.org/10.1186/1753-6561-5-S7-P53
  23. Mellish, A., Coulman, B. and Ferdinandez, Y. 2002. Genetic Relationships among Selected Crested Wheatgrass Cultivars and Species Determined on the Basis of AFLP Markers. Crop Science, 42(5): 1662–1668. http://doi.org/10.2135/cropsci2002.1662
  24. Michelmore, R., Paran, I. and Kesseli, R. 1991. Identification of markers linked to disea- se-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using se- gregating populations. Proceedings of the National Academy of Sciences of the United States of America, 88(21): 9828–32. http://doi.org/10.1073/pnas.88.21.9828
  25. Mora, F., Arriagada, O., Ballesta, P. and Ruiz, E. 2016. Genetic diversity and population structure of a drought-tolerant species of Eucalyptus, using microsatellite markers. J. Plant Biochem. Biotechnol.1-8 . https://doi.org/10.1007/s13562-016-0389-z
  26. Najimi, B., Boukhatem, N., Jaafri, S., Jlibène, M., Paul, R. and Jacquemin, J. 2002. Amplified fragment length polymorphism (AFLP) analysis of markers associated with H5 and H22 Hessian fly resistance genes in bread wheat. Biotechnol Agron Soc Environ 6: 79-85.
  27. Payn, K., Dvorak, W., Janse, B. and J, Myburg, A. 2008. Microsatellite diversity and genetic structure of the commercially important tropical tree species Eucalyptus urophylla, endemic to seven islands in eastern Indonesia. Tree Genet Gen 4: 519-530. https://doi.org/10.1007/s11295-007-0128-7
  28. Poltri, S., Zelener, N., Traverso, J., Gelid, P., and Hopp, H. 2003. Selection of a seed orchard of Eucalyptus dunnii based on genetic diversity criteria calculated using molecular markers.Tree Physiology, 23(9): 625–32. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12750055. ; https://doi.org/10.1093/treephys/23.9.625

Sistema OJS 3.4.0.3 - Metabiblioteca |