Skip to main navigation menu Skip to main content Skip to site footer

Potential of Stenotrophomonas maltophilia for the biodegradation of hydrocarbons and heavy metals. A systematic review with meta-analysis

Potencial de Stenotrophomonas maltophilia para la biodegradación de hidrocarburos y metales pesados. Una revisión sistemática con meta-análisis



How to Cite
Fonseca Peralta, J. R., & Sánchez Leal, L. C. (2022). Potential of Stenotrophomonas maltophilia for the biodegradation of hydrocarbons and heavy metals. A systematic review with meta-analysis. Ingeniería E Innovación, 10(1). https://doi.org/10.21897/23460466.2901

Dimensions
PlumX
Julian Rolando Fonseca Peralta
Ligia Consuelo Sánchez Leal

Julian Rolando Fonseca Peralta,

Pregrado en bacteriología y laboratorio clínico (en curso), Universidad Colegio Mayor de Cundinamarca, estudiante, grupo Ceparium, Facultad Ciencias de la Salud, Carrera 11B este #65 A 15 sur, Bogotá, Colombia, teléfono: (+57)3125208999, jrfonseca@unicolmayor.edu.co, https://orcid.org/0000-0001-8260-7372


Ligia Consuelo Sánchez Leal,

Maestría en biología con énfasis en fitoprotección, Universidad Colegio Mayor de Cundinamarca, docente de planta, grupo Ceparium, Facultad Ciencias de la Salud, Bogotá, Colombia


Pollution of terrestrial and aquatic ecosystems by toxic substances such as hydrocarbons and heavy metals, manipulated to a great extent in activities fundamental to the world economy, is currently one of the most serious and dangerous growing environmental problems for human and environmental health. Hydrocarbons are generated in large quantities by the incomplete burning of organic matter, inevitably reaching the soil and water and then, due to their properties, bioaccumulate causing serious damage to living beings. On the other hand, heavy metals, very useful in industry, especially in mining, when they accumulate in the soil and in water in high concentrations, cause different damages both in plants and in humans and animals. The objective of this review was to analyze how the use of Stenotrophomonas maltophilia has increased in recent years in research related to the bioremediation of ecosystems contaminated with these substances. Materials and methods: A meta-analysis were carried out in two consecutive periods of fifteen years, the first between 1990 and 2005, and the second between 2006 and 2021; when applying inclusion and exclusion criteria, certain publications were selected in order to analyze the evolution in research on the capacity of S. maltophilia for the biodegradation of hydrocarbons and heavy metals. Results: When selecting the publications, it was evidenced that the study of the biodegradation potential of S. maltophilia increased notably in the second period of time, most likely due to the growth of environmental problems and the growing impact of taking advantage of the metabolic characteristics of microorganisms for different purposes in recent years.


Article visits 463 | PDF visits


Downloads

Download data is not yet available.
  1. AbuBakr, S. M., Davidova, I. A., & Duncan, K. E. (2015). Test of Polyaromatic Hydrocarbon Degradation by Nitrate-reducing Microorganisms Isolated from Tallgrass Prairie Soils. Proceedings of the Oklahoma Academy of Science, 95, 161–180. https://ojs.library.okstate.edu/osu/index.php/OAS/article/view/6888
  2. Adegoke, A., Tom, M., & Okoh, A. (2011). Stenotrophomonas maltophilia, A Commensal of Importance to Biotechnology. JOURNAL OF PURE AND APPLIED MICROBIOLOGY. https://www.researchgate.net/publication/257988886_Stenotrophomonas_maltophilia_A_Commensal_of_Importance_to_Biotechnology
  3. Alfonso-Gordillo, G., Cristiani-Urbina, E., Flores-Ortiz, C. M., Peralta, H., Cancino-Díaz, J. C., Cruz-Maya, J. A., & Jan-Roblero, J. (2016). Stenotrophomonas maltophilia isolated from gasoline-contaminated soil is capable of degrading methyl tert-butyl ether. Electronic Journal of Biotechnology, 23, 12–20. https://doi.org/10.1016/J.EJBT.2016.06.006
  4. Bashandy, S. R., Abd-Alla, M. H., & Dawood, M. F. A. (2020). Alleviation of the toxicity of oily wastewater to canola plants by the N2-fixing, aromatic hydrocarbon biodegrading bacterium Stenotrophomonas maltophilia-SR1. Applied Soil Ecology, 154, 103654. https://doi.org/10.1016/J.APSOIL.2020.103654
  5. Çetinkaya Dönmez, G., Aksu, Z., Öztürk, A., & Kutsal, T. (1999). A comparative study on heavy metal biosorption characteristics of some algae. Process Biochemistry, 34(9), 885–892. https://doi.org/10.1016/S0032-9592(99)00005-9
  6. Chen, S., Yin, H., Chang, J., Peng, H., & Dang, Z. (2017). Physiology and bioprocess of single cell of Stenotrophomonas maltophilia in bioremediation of co-existed benzo[a]pyrene and copper. Journal of Hazardous Materials, 321, 9–17. https://doi.org/10.1016/J.JHAZMAT.2016.09.002
  7. Chen, S., Yin, H., Tang, S., Peng, H., Liu, Z., & Dang, Z. (2016). Metabolic biotransformation of copper–benzo[a]pyrene combined pollutant on the cellular interface of Stenotrophomonas maltophilia. Bioresource Technology, 204, 26–31. https://doi.org/10.1016/J.BIORTECH.2015.12.068
  8. Chen, S., Yin, H., Ye, J., Peng, H., Liu, Z., Dang, Z., & Chang, J. (2014). Influence of co-existed benzo[a]pyrene and copper on the cellular characteristics of Stenotrophomonas maltophilia during biodegradation and transformation. Bioresource Technology, 158, 181–187. https://doi.org/10.1016/J.BIORTECH.2014.02.020
  9. Chen, S., Yin, H., Ye, J., Peng, H., Zhang, N., & He, B. (2013). Effect of copper(II) on biodegradation of benzo[a]pyrene by Stenotrophomonas maltophilia. Chemosphere, 90(6), 1811–1820. https://doi.org/10.1016/J.CHEMOSPHERE.2012.09.009
  10. Chen, Z., Ma, W., & Han, M. (2008). Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): Application of isotherm and kinetic models. Journal of Hazardous Materials, 155(1–2), 327–333. https://doi.org/10.1016/J.JHAZMAT.2007.11.064
  11. Gao, J., Ye, J., Ma, J., Tang, L., & Huang, J. (2014). Biosorption and biodegradation of triphenyltin by Stenotrophomonas maltophilia and their influence on cellular metabolism. Journal of Hazardous Materials, 276, 112–119. https://doi.org/10.1016/J.JHAZMAT.2014.05.023
  12. Gao, S., Seo, J. S., Wang, J., Keum, Y. S., Li, J., & Li, Q. X. (2013). Multiple degradation pathways of phenanthrene by Stenotrophomonas maltophilia C6. International Biodeterioration & Biodegradation, 79, 98–104. https://doi.org/10.1016/J.IBIOD.2013.01.012
  13. Ghosh, A., & Saha, P. Das. (2013). Optimization of copper bioremediation by Stenotrophomonas maltophilia PD2. Journal of Environmental Chemical Engineering, 1(3), 159–163. https://doi.org/10.1016/J.JECE.2013.04.012
  14. Hemlata, B., Selvin, J., & Tukaram, K. (2015). Optimization of iron chelating biosurfactant production by Stenotrophomonas maltophilia NBS-11. Biocatalysis and Agricultural Biotechnology, 4(2), 135–143. https://doi.org/10.1016/J.BCAB.2015.02.002
  15. Imam, A., Suman, S. K., Ghosh, D., & Kanaujia, P. K. (2019). Analytical approaches used in monitoring the bioremediation of hydrocarbons in petroleum-contaminated soil and sludge. TrAC Trends in Analytical Chemistry, 118, 50–64. https://doi.org/10.1016/J.TRAC.2019.05.023
  16. Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration & Biodegradation, 45(1–2), 57–88. https://doi.org/10.1016/S0964-8305(00)00052-4
  17. Köhler, M., Hofmann, K., Völsgen, F., Thurow, K., & Koch, A. (2001). Bacterial release of arsenic ions and organoarsenic compounds from soil contaminated by chemical warfare agents. Chemosphere, 42(4), 425–429. https://doi.org/10.1016/S0045-6535(00)00060-6
  18. Kozdrój, J., & Van Elsas, J. D. (2000). Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biology and Biochemistry, 32(10), 1405–1417. https://doi.org/10.1016/S0038-0717(00)00058-4
  19. Lara-Moreno, A., Morillo, E., Merchán, F., & Villaverde, J. (2021). A comprehensive feasibility study of effectiveness and environmental impact of PAH bioremediation using an indigenous microbial degrader consortium and a novel strain Stenotrophomonas maltophilia CPHE1 isolated from an industrial polluted soil. Journal of Environmental Management, 289, 112512. https://doi.org/10.1016/J.JENVMAN.2021.112512
  20. Niane, B., Devarajan, N., Poté, J., & Moritz, R. (2019). Quantification and characterization of mercury resistant bacteria in sediments contaminated by artisanal small-scale gold mining activities, Kedougou region, Senegal. Journal of Geochemical Exploration, 205, 106353. https://doi.org/10.1016/J.GEXPLO.2019.106353
  21. Pabón, S. E., Benítez, R., Sarria, R. A., Gallo, J. A., Pabón, S. E., Benítez, R., Sarria, R. A., & Gallo, J. A. (2020). Contaminación del agua por metales pesados, métodos de análisis y tecnologías de remoción. Una revisión. Entre Ciencia e Ingeniería, 14(27), 9–18. https://doi.org/10.31908/19098367.0001
  22. Parapouli, M., Foukis, A., Panagiota-Yiolanda, S., Koukouritaki, M., Magklaras, P., Gkini, O., Papamichael, E., Afendra, A., & Hatziloukas, E. (2018). Molecular, biochemical and kinetic analysis of a novel, thermostable lipase (LipSm) from Stenotrophomonas maltophilia Psi-1, the first member of a new bacterial lipase family (XVIII). Journal of Biological Research (Thessalonike, Greece), 25(1). https://doi.org/10.1186/S40709-018-0074-6
  23. Raman, N., Asokan, S., Shobana Sundari, N., & Ramasamy, S. (2017). Bioremediation of chromium(VI) by Stenotrophomonas maltophilia isolated from tannery effluent. International Journal of Environmental Science and Technology 2017 15:1, 15(1), 207–216. https://doi.org/10.1007/S13762-017-1378-Z
  24. Şahan, T., Ceylan, H., Şahiner, N., & Aktaş, N. (2010). Optimization of removal conditions of copper ions from aqueous solutions by Trametes versicolor. Bioresource Technology, 101(12), 4520–4526. https://doi.org/10.1016/J.BIORTECH.2010.01.105
  25. Samanta, S. K., Singh, O. V., & Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends in Biotechnology, 20(6), 243–248. https://doi.org/10.1016/S0167-7799(02)01943-1
  26. Sánchez-Castro, I., Martínez-Rodríguez, P., Abad, M. M., Descostes, M., & Merroun, M. L. (2021). Uranium removal from complex mining waters by alginate beads doped with cells of Stenotrophomonas sp. Br8: Novel perspectives for metal bioremediation. Journal of Environmental Management, 296, 113411. https://doi.org/10.1016/J.JENVMAN.2021.113411
  27. Tripathi, S., Sharma, P., Purchase, D., Tiwari, M., Chakrabarty, D., & Chandra, R. (2021). Biodegradation of organo-metallic pollutants in distillery wastewater employing a bioaugmentation process. Environmental Technology & Innovation, 23, 101774. https://doi.org/10.1016/J.ETI.2021.101774
  28. Velásquez, J. A. (2017). Contaminación de suelos y aguas por hidrocarburos en Colombia. Análisis de la fitorremediación como estrategia biotecnológica de recuperación. Revista de Investigación Agraria y Ambiental, 8(1), 151–167. https://doi.org/10.22490/21456453.1846
  29. Wang, Y. S., Zheng, X. C., Hu, Q. W., & Zheng, Y. G. (2015). Degradation of abamectin by newly isolated Stenotrophomonas maltophilia ZJB-14120 and characterization of its abamectin-tolerance mechanism. Research in Microbiology, 166(5), 408–418. https://doi.org/10.1016/J.RESMIC.2015.04.002
  30. Wilson, V. L., Tatford, B. C., Yin, X., Rajki, S. C., Walsh, M. M., & Larock, P. (1999). Species-specific detection of hydrocarbon-utilizing bacteria. Journal of Microbiological Methods, 39(1), 59–78. https://doi.org/10.1016/S0167-7012(99)00098-6
  31. Yao, Z. Y., Qi, J. H., & Wang, L. H. (2010). Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell. Journal of Hazardous Materials, 174(1–3), 137–143. https://doi.org/10.1016/J.JHAZMAT.2009.09.027
  32. Yasir, M. W., Capozzi, S. L., Kjellerup, B. V., Mahmood, S., Mahmood, T., & Khalid, A. (2021). Simultaneous biotreatment of hexavalent chromium Cr(VI) and polychlorinated biphenyls (PCBs) by indigenous bacteria of Co-polluted wastewater. International Biodeterioration & Biodegradation, 161, 105249. https://doi.org/10.1016/J.IBIOD.2021.105249
  33. Zang, H., Yu, Q., Lv, T., Cheng, Y., Feng, L., Cheng, X., & Li, C. (2016). Insights into the degradation of chlorimuron-ethyl by Stenotrophomonas maltophilia D310-3. Chemosphere, 144, 176–184. https://doi.org/10.1016/J.CHEMOSPHERE.2015.08.073
  34. Zhao, M. M., Kou, J. bin, Chen, Y. ping, Xue, L. gui, Fan, T. T., & Wang, S. mei. (2021). Bioremediation of wastewater containing mercury using three newly isolated bacterial strains. Journal of Cleaner Production, 299, 126869. https://doi.org/10.1016/J.JCLEPRO.2021.126869
  35. Zhou, J., Li, P., Meng, D., Gu, Y., Zheng, Z., Yin, H., Zhou, Q., & Li, J. (2020). Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under Cd contaminated environment. Environmental Pollution, 260, 113990. https://doi.org/10.1016/J.ENVPOL.2020.113990
  36. Ziagova, M., Dimitriadis, G., Aslanidou, D., Papaioannou, X., Litopoulou Tzannetaki, E., & Liakopoulou-Kyriakides, M. (2007). Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresource Technology, 98(15), 2859–2865. https://doi.org/10.1016/J.BIORTECH.2006.09.043

Sistema OJS 3.4.0.3 - Metabiblioteca |