Skip to main navigation menu Skip to main content Skip to site footer

Production of sunscreen from Chlorella vulgaris

Producción de protector solar a partir de Chlorella vulgaris




How to Cite
Sandoval Herrera, J., Casas, L. ., & Naranjo, K. (2023). Production of sunscreen from Chlorella vulgaris. Ingeniería E Innovación, 11(1). https://doi.org/10.21897/rii.3338

Dimensions
PlumX

Laura Casas

Universidad de América, Semillero Procycles/Ingeniería Química, Bogotá D.C., Colombia


Kelly Naranjo

Universidad de América, Semillero Procycles/Ingeniería Química, Bogotá D.C., Colombia


Microalgae are potential candidates for the development of safe and environmentally friendly photoprotectors since they can produce metabolites rich in UV filter (β carotenoids and myco-porins) because they are found in ecological niches that allow them to develop pigments to capture light. In this work, Chlorella vulgaris was implemented in the production of a laboratory-scale sunscreen. This was grown in two photobioreactors in the medium of Bold Basal cultivation for 42 days, with continuous pneumatic agitation, pH between 8-9 and temperature between 17 °C and 19 °C. The light intensity supply was continuous and of red LED light and white LED light type for the first crop and the second crop, respectively. Cell growth, growth rate, dry weight, productivity and concentration of β carotenoids and mycosporins were evaluated. For the formulation of sunscreen, dry microalgal biomass was used as a UV filter and the prototype was evaluated with its physical, organoleptic properties and sun protection factor through in vitro method. White LED light increased the growth rate and productivity of the microalgae. The concentration of mycosporins increased in the first culture and the concentration of β carotenoids was affected by the intensity of light, showing higher light intensity, greater production of these photoprotective molecules. The SPF was 7.74 which classifies the sunscreen as a medium protection. The results obtained in this work demonstrate the potential of Chlorella vulgaris to be used in the production of biological sunscreens.


Article visits 354 | PDF visits


Downloads

Download data is not yet available.
  1. Amador-Castro, F., Rodriguez-Martinez, V., & Carrillo-Nieves, D. (2020). Robust natural ultraviolet filters from marine ecosystems for the formulation of environmental friendlier bio-sunscreens. The Science of the Total Environment, 749(141576), 2-11.
  2. Ariede, M. B., Candido, T. M., Jacome, A. L. M., Velasco, M. V. R., de Carvalho, J. C. M., & Baby, A. R. (2017). Cosmetic attributes of algae - A review. Algal Research, 25, 483-487.
  3. Arredondo, B., & Voltolina, D. (2007). Métodos y herramientas analíticas en la evaluación de la biomasa microalgal. CIBNOR.
  4. Batlle, C. (2005). factor de protección solar. 24 (6), 65-72.
  5. Bertoloni, B. (2022). In vitro photoprotective attributes from the Chlorella vulgaris cultivated in photobioreactor.
  6. Carrascal Rivera, D.D., Tasco Quintero, A. C., Barajas-Solano, A.F., García J.B & Machuca F. (2021). Analysis of the aplications of the microalgae Botryococcus braunii in industrial. 12(2),2-4.
  7. Chois, F. (2014). Evaluación de la acumulación de carbohidratos en la microalga Chlorella spp. Asociada con la bacteria Azospirillum brasilense.
  8. Corzo Piñeros, R. J., Manrique Ruíz, I. G., Sandoval Herrera, J. A., y Rubio Fernández, D. (2019). Evaluación de carotenoides y lípidos en la microalga Scenedesmus dimorphus a escala laboratorio. Revista Mutis, 9(1), 20–28. https://doi.org/10.21789/22561498.1471
  9. Crespo, C. (2022). ¿Qué impacto tienen los protectores solares en los ecosistemas? https://www.nationalgeographicla.com/medio-ambiente/2022/09/que-impacto-tienen-los-protectores-solares-en-los-ecosistemas.
  10. Dunlap, W. C., Rae, G. A., Helbling, E. W., Villafa e, V. E., & Holm-Hansen, O. (1995). Ultraviolet-absorbing compounds in natural assemblages of Antarctic phytoplankton. Antarctic Journal of the United States, 30, 323-326.
  11. Gomez, C., & Legido, J. (2017). The Potential Use of Marine Microalgae and Cyanobacteria in Cosmetics and Thalassotherapy . 4 (46), 5-14.
  12. Gomez, L., Tormos, L., & Ortega, Y. (2022). Cultivo y aplicaciones de Chlorella vulgaris: principales tendencias y potencialidades en la agricultura. Tecnología Química, 42 (1), 1-70.
  13. Grand View Research. (2020). Cosmetics Market Size, Share & Trends Analysis Report By Product (Skin Care, Hair Care, Makeup, Fragrance), By End-user (Men, Women), By Distribution Channel, By Region, And Segment Forecasts, 2023 - 2030. https://www.grandviewresearch.com/industry-analysis/cosmetics-market#.
  14. Huang, J. J., Bunjamin, G., Teo, E. S., Ng, D. B., & Lee, Y. K. (2016). An enclosed rotating floating photobioreactor (RFP) powered by flowing water for mass cultivation of photosynthetic microalgae. Biotechnology for Biofuels, 9(218), 1-18. 10.1186/s13068-016-0633-8.
  15. Ibanez, F. (2018). Protocolo para la determinación de carotenoides en frutos nativos.
  16. Llewellyn, C. A., Greig, C., Silkina, A., Kultschar, B., Hitchings, M. D., & Farnham, G. (2020). Mycosporine-like amino acid and aromatic amino acid transcriptome response to UV and far-red light in the cyanobacterium Chlorogloeopsis fritschii PCC 6912. Scientific Reports, 10(20638),1-13. 10.1038/s41598-020-77402-6.
  17. Martinez, M., Robles, J., Narvaez, A., Franseschi, F., Tamayo, M., Ruiz, A., & López, Y. (2022, Desarrollo celular de Chlorella vulgaris en FBR de columna de burbujeo bajo distintos regímenes de luz.8(23), 1-13.
  18. Metsoviti, M. N., Papapolymerou, G., Karapanagiotidis, I. T., & Katsoulas, N. (2019). Effect of Light Intensity and Quality on Growth Rate and Composition of Chlorella vulgaris. Plants, 9(1), 1-31.10.3390/plants9010031.
  19. Narla, S., & Lim, H. W. (2020). Sunscreen: FDA regulation, and environmental and health impact. Photochemical & Photobiological Sciences, 19(1), 7-66.
  20. Outon, J. (2019). DISEÑO Y VALIDACIÓN DE UN MÉTODO NO INVASIVO PARA LA DETERMINACIÓN DEL FACTOR DE PROTECCIÓN DE CREMAS SOLARES. FABRICACIÓN DE UNA CREMA A PARTIR DE MICROALGAS Y EL DISEÑO DE SU PROCESO DE PRODUCCIÓN.
  21. Pachpawar, N. G., Mahajan, U. N., & Kharwade, R. S. (2018). FORMULATION AND EVALUATION OF SUN PROTECTIVE TOPICAL PREPARATION. International Research Journal of Pharmacy, 9(2), 27-32.
  22. Pourkarimi, S., Hallajisani, A., Alizadehdakhel, A., Nouralishahi, A., & Golzary, A. (2020). Factors affecting production of beta-carotene from Dunaliella salina microalgae. Biocatalysis and Agricultural Biotechnology, 29 (101771),7-25.
  23. Raj, S., Kuniyil, A. M., Sreenikethanam, A., Gugulothu, P., Jeyakumar, R. B., & Bajhaiya, A. K. (2021). Microalgae as a Source of Mycosporine-like Amino Acids (MAAs); Advances and Future Prospects. International Journal of Environmental Research and Public Health, 18(23), 10.3390/ijerph182312402.
  24. Reis Mansur, M. C. P. P., Leitão, S. G., Cerqueira-Coutinho, C., Vermelho, A. B. Silva, R. S., Presgrave, O. A. F., Leitão, Á A. C., Leitão, G. G. Ricci-Júnior, E., & Santos, E. P. (2016). In vitro and in vivo evaluation of efficacy and safety of photoprotective formulations containing antioxidant extracts. Revista Brasileira De Farmacognosia, 26(2), 251-258.
  25. Rios, A. (2020). Proyecto genérico: OBTENCIÓN DE MATERIAS PRIMAS, PRINCIPIOS ACTIVOS, MEDICAMENTOS Y PRODUCTOS BIOLÓGICOS.
  26. Rubio Fernández, D., Barrera Flórez, N. A., Angélica, L., Buitrago, F., Jaimes Baquero, C. E. (2017). Aspectos teóricos de la extracción de carotenoides a partir de microalgas. 3(1), 1-14.
  27. S, D., M, B., K, D., B, S., BS, V., D, S., & N, M. (2017). Studies on the Effect of Red, Blue and White LED
  28. Lights on the Productivity of Chlorella Vulgaris to Treat Dye Industry Effluent, 6(2), 10.19080/AIBM.2017.06.555682.
  29. Safi, C., Zebib, B., Merah, O., Pontalier, P., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable & Sustainable Energy Reviews, 35, 265-278.
  30. Salvador, A., & Chisvert, A. (2005). Sunscreen analysis. Analytica Chimica Acta, 537(1), 1-14.
  31. U.S. Food & Drug. (2023). Inactive Ingredients Database Download. https://www.fda.gov/drugs/drug-approvals-and-databases/inactive-ingredients-database-download.
  32. World Health Organization. (2022). Ultraviolet radiation. https://www.who.int/news-room/fact-sheets/detail/ultraviolet-radiation.
  33. Yarkent, Ç, Gürlek, C., & Oncel, S. S. (2020). Potential of microalgal compounds in trending natural cosmetics: A review. Sustainable Chemistry and Pharmacy, 17 (100304), 1-7.

Sistema OJS 3.4.0.3 - Metabiblioteca |