Skip to main navigation menu Skip to main content Skip to site footer

Emerging technologies applied in sports.

Tecnologías emergentes aplicadas en el deporte1



How to Cite
Caballero Santafe, J. S., & Núñez Lázaro, H. E. (2024). Emerging technologies applied in sports. Ingeniería E Innovación, 12(2). https://doi.org/10.21897/rii.3808

PlumX
Juan Sebastián Caballero Santafe
Henry Eduardo Núñez Lázaro

The objective of this article is to analyze the implementation of emerging
technologies in sports to improve the experience of athletes, coaches and
fans. The world of sports is in constant innovation, which requires efficient
management of specialized technological tools. These emerging technologies
focus on helping athletes perform better on the field, optimize training
regimens, and revolutionize decision-making processes. By using machine
learning algorithms, predictive analytics, and computer vision technologies,
effective strategies can be established. For this study, 40 articles were selected
from databases such as Scopus, ScienceDirect and IEEE. The main findings
indicate that technological tools not only improve competitiveness, but also
help prevent future injuries.


Article visits 9 | PDF visits


Downloads

  1. Adesida, Y., Papi, E., & McGregor, A. H. (2019). Exploring the role of wearable technology in sport kinematics and kinetics: A systematic review.
  2. In Sensors (Switzerland) (Vol. 19, Issue 7). MDPI AG. https://doi.org/10.3390/s19071597
  3. ALEXANDER, W. LINDSAY. (2019). ST. PAUL AT ATHENS (CLASSIC REPRINT). FORGOTTEN BOOKS. Apostolou, K., & Tjortjis, C. (2019, July 1). Sports
  4. Analytics algorithms for performance prediction. 10th International Conference on Information, Intelligence, Systems and Applications, IISA 2019.
  5. https://doi.org/10.1109/IISA.2019.8900754
  6. Araújo, D., Couceiro, M., Seifert, L., Sarmento, H., & Davids, K. (2021). Artificial intelligence in sport performance analysis. In Artificial Intelligence in Sport Performance Analysis. Taylor and Francis. https://doi.org/10.4324/9781003163589
  7. Biró, A., Cuesta-Vargas, A. I., & Szilágyi, L. (2024). AI-Assisted Fatigue and Stamina Control for Performance Sports on IMU-Generated Multivariate Times Series Datasets. Sensors, 24(1). https://doi.org/10.3390/s24010132
  8. Calderón, R. (n.d.). Universidad La Salle Bienes comunes digitales de la Universidad La Salle Piedras angulares de la investigación forense sobre delitos
  9. económicos Programa forense de delitos económicos !e Beneficios de la Inteligencia Arti&cial en Ciberseguridad.
  10. Chen, G., & Wu, H. (2024). Optimization simulation of sports stadium training based on Ant colony algorithm and sensor network. Measurement:
  11. Sensors, 33, 101100. https://doi.org/10.1016/j.measen.2024.101100
  12. Chen, Z., & Dai, X. (2024). Utilizing AI and IoT technologies for identifying risk factors in sports. Heliyon, 10(11). https://doi.org/10.1016/j.heliyon.2024.e32477
  13. Chidambaram, S., Maheswaran, Y., Patel, K., Sounderajah, V., Hashimoto, D. A., Seastedt, K. P., McGregor, A. H., Markar, S. R., & Darzi, A. (2022). Using
  14. Artificial Intelligence-Enhanced Sensing and Wearable Technology in Sports Medicine and Performance Optimisation. In Sensors (Vol. 22, Issue 18). MDPI. https://doi.org/10.3390/s22186920
  15. De Oliveira, M. S., Steffen, V., & Trojan, F. (2023). A systematic review of the literature on video assistant referees in soccer: Challenges and
  16. opportunities in sports analytics. Decisión Analytics Journal, 7. https://doi.org/10.1016/j.dajour.2023.100232
  17. Fuss, F. K. , S. A. , S. M. , & M. R. (2014). Routledge Handbook of Sports Technology and Engineering. Routledge.
  18. Goel, A. (2024). IS TECHNOLOGY A COMPLEMENT OR SUBSTITUTE TO REFEREEING IN SPORTS? A REVIEW (Review study). IJSTS International Journal of Sport Technology
  19. and Science International Journal of Sports Technology and Science, 2(1), 13–23. https://www.globsportsjournal.com/
  20. Gsangaya, M. R., Htwe, O., Selvi Naicker, A., Md Yusoff, B. A. H., Mohammad, N., Soh, E. Z. F., & Silvaraju M. (2023). Comparison between the effect
  21. of immersive virtual reality training versus conventional rehabilitation on limb loading and functional outcomes in patients after anterior
  22. cruciate ligament reconstruction: A prospective randomized controlled trial. Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and
  23. Technology, 34, 28–37. https://doi.org/10.1016/j.asmart.2023.09.002
  24. Jager, E. W. H., Inganäs, O., & Lundström, I. (2000). Microrobots for micrometer-size objects in aqueous media: Potential tools for single-cell manipulation. Science, 288(5475), 2335–2338. https://doi.org/10.1126/science.288.5475.2335
  25. Jenkins, L., & Weerasekera, R. (2022). Sport-related back injury prevention with a wearable device. Biosensors and Bioelectronics: X, 11. https://doi.org/10.1016/j.biosx.2022.100202
  26. Khuyen, N. Q., Kiefer, R., Elhi, F., Anbarjafari, G., Martinez, J. G., & Tamm, T. (2020). A biomimetic approach to increasing soft actuator performance by friction reduction. Polymers, 12(5). https://doi.org/10.3390/POLYM12051120
  27. Kovoor, M., Durairaj, M., Karyakarte, M. S., Zair Hussain, M., Ashraf, M., & Maguluri, L. P. (2024). Sensorenhanced wearables and automated analytics
  28. for injury prevention in sports. Measurement: Sensors, 32, 101054. https://doi.org/10.1016/j. measen.2024.101054
  29. Li, Y., Kim, M., & Palkar, J. (2022). Using emerging technologies to promote creativity in education: A systematic review. International Journal
  30. of Educational Research Open, 3. https://doi.org/10.1016/j.ijedro.2022.100177
  31. Liu, Y., & Cao, S. (2024). The analysis of aerobics intelligent fitness system for neurorobotics based on big data and machine learning. Heliyon, 10(12). https://doi.org/10.1016/j.heliyon.2024.e33191
  32. Lopez‐barreiro, J., Alvarez‐sabucedo, L., Garcia‐soidan, J. L., & Santos‐gago, J. M. (2022). Use of Blockchain Technology in the Domain of Physical Exercise, Physical Activity, Sport, and Active Ageing: A Systematic Review. In International Journal of Environmental Research and Public Health (Vol.
  33. , Issue 13). MDPI. https://doi.org/10.3390/ijerph19138129
  34. Muniz-Pardos, B., Angeloudis, K., Guppy, F. M., Keramitsoglou, I., Sutehall, S., Bosch, A., Tanisawa, K., Hosokawa, Y., Ash, G. I., Schobersberger, W., Grundstein, A. J., Casa, D. J., Morrissey, M. C., Yamasawa, F., Zelenkova, I., Racinais, S., & Pitsiladis, Y. (2021). Wearable and telemedicine innovations for Olympic events and elite sport. In Journal of Sports Medicine and Physical Fitness (Vol. 61, Issue 8, pp. 1061–1072). Edizioni Minerva Medica. https://doi.org/10.23736/S0022-4707.21.12752-5
  35. Nguyen, H. S., & Voznak, M. (2024). A Bibliometric Analysis of Technology in Digital Health: Exploring Health Metaverse and Visualizing Emerging
  36. Healthcare Management Trends. IEEE Access, 12, 23887–23913. https://doi.org/10.1109/ACCESS.2024.3363165
  37. Petrović, L. T., Milovanović, D., & Desbordes, M. (2015). Emerging technologies and sports events: Innovative information and communication solutions.
  38. Sport, Business and Management: An International Journal, 5(2), 175–190. https://doi.org/10.1108/SBM-06-2012-0021
  39. Putranto, J. S., Heriyanto, J., Kenny, Achmad, S., & Kurniawan, A. (2022). Implementation of virtual reality technology for sports education and
  40. training: Systematic literature review. Procedia Computer Science, 216, 293–300. https://doi.org/10.1016/j.procs.2022.12.139
  41. Qie, X. (2023). Feedback delay of sports intelligent learning system based on model predictive control and artificial intelligence. Measurement: Sensors, 30. https://doi.org/10.1016/j.measen.2023.100922
  42. Qiu, Y., Liu, G., Muthu, B. A., & Sivaparthipan, C. B. (2022). Design of an energy- efficient IoT device with optimized data management in sports person
  43. health monitoring application. Transactions on Emerging Telecommunications Technologies, 33(10). https://doi.org/10.1002/ett.4258
  44. Ramirez-GarciaLuna, J. L., Bartlett, R., Arriaga-Caballero, J. E., Fraser, R. D. J., & Saiko, G. (2022). Infrared Thermography in Wound Care, Surgery, and Sports Medicine: A Review. In Frontiers in Physiology (Vol.13). Frontiers Media S.A. https://doi.org/10.3389/fphys.2022.838528
  45. Roggio, F., Bianco, A., Palma, A., Ravalli, S., Maugeri, G., Rosa, M. Di, & Musumeci, G. (2021). Technological advancements in the analysis of human motion and posture management through digital devices. World Journal of Orthopedics, 12(7), 467–484. https://doi.org/10.5312/wjo.v12.i7.467
  46. Seshadri, D. R., Magliato, S., Voos, J. E., & Drummond, C. (2019). Clinical translation of biomedical sensors for sports medicine. In Journal of Medical Engineering and Technology (Vol. 43, Issue 1, pp. 66–81). Taylor and Francis Ltd. https://doi.org/10.1080/03091902.2019.1612474
  47. Stevens, E., Espitia, F., Santo, U., Seccional, T., Julian, T., Triana, C., Universidad, Q., Tomas, S., & Tunja, S. (2023). Tecnología Vestible para Evaluar
  48. Capacidades Físicas de Fuerza y Velocidad de Ejecución en Deportistas: Revisión Narrativa.
  49. Tenforde, A. S., Iaccarino, M. A., Borgstrom, H., Hefner, J. E., Silver, J., Ahmed, M., Babu, A. N., Blauwet, C. A., Elson, L., Eng, C., Kotler, D., Homer, S., Makovitch, S., McInnis, K. C., Vora, A., & Borg- Stein, J. (2020). Telemedicine During COVID-19 for Outpatient Sports and Musculoskeletal Medicine
  50. Physicians. PM and R, 12(9), 926–932. https://doi.org/10.1002/pmrj.12422
  51. Van Biemen, T., Müller, D., & Mann, D. L. (2023). Virtual reality as a representative training environment for football referees. Human Movement Science,
  52. https://doi.org/10.1016/j.humov.2023.103091
  53. Wang, J. (2012). Research on application of virtual reality technology in competitive sports. Procedia Engineering, 29, 3659–3662. https://doi.org/10.1016/j.proeng.2012.01.548
  54. Wang, X., & Guo, Y. (2023). The intelligent football players’ motion recognition system based on convolutional neural network and big data. Heliyon, 9(11).
  55. https://doi.org/10.1016/j.heliyon.2023.e22316
  56. Wei, S., Huang, P., Li, R., Liu, Z., & Zou, Y. (2021). Exploring the Application of Artificial Intelligence in Sports Training: A Case Study Approach. Complexity, 2021. https://doi.org/10.1155/2021/4658937
  57. Yang, Y. (2024). Application of wearable devices based on artificial intelligence sensors in sports human health monitoring. Measurement: Sensors,
  58. , 101086. https://doi.org/10.1016/j.measen. 2024.101086
  59. Ye, S., Feng, S., Huang, L., & Bian, S. (2020). Recent Progress in Wearable Biosensors: From Healthcare Monitoring to Sports Analytics. In Biosensors (Vol.
  60. , Issue 12). MDPI. https://doi.org/10.3390/BIOS10120205
  61. Yu, S. (2021). Application of Blockchain-Based Sports Health Data Collection System in the Development of Sports Industry. Mobile Information Systems,
  62. https://doi.org/10.1155/2021/4663147
  63. Zhang, Y., Pi, Y., Wang, Q., Long, X., Wan, S., Liu, P., & Liu, Y. (2024). Application of video behavior fast detection based on wearable motion sensor devices in sports training. Measurement: Sensors, 33, 101096. https://doi.org/10.1016/j.measen.2024.101096
  64. Zhou, L. (2021). Molecularly Imprinted Sensor based on Ag-Au NPs/SPCE for Lactate Determination in Sweat for Healthcare and Sport Monitoring.
  65. International Journal of Electrochemical Science, 16, 1–13. https://doi.org/10.20964/2021.10.54

Este portal usa cookies para mejorar su experiencia de usuario. Al utilizar nuestro sitio web, usted acepta nuestra Política de cookies.

Sistema OJS 3.4.0.3 - Metabiblioteca |