Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Evaluación de la mezcla de sustratos en un cultivo de lechuga (Lactuca sativa L.) var. Verónica

Evaluation of substrate mixture in a lettuce yield (Lactuca sativa L.) var. Veronica



Cómo citar
Reyes-Medina, A. J., Fraile-Robayo, D., & Álvarez-Herrera, J. G. (2019). Evaluación de la mezcla de sustratos en un cultivo de lechuga (Lactuca sativa L.) var. Verónica. Temas Agrarios, 24(1), 34-41. https://doi.org/10.21897/rta.v24i1.1776

Dimensions
PlumX
Andrea J. Reyes-Medina
David Fraile-Robayo
Javier G. Álvarez-Herrera

La producción de hortalizas en sustratos se ha convertido en una gran alternativa. Por lo anterior, se evaluaron diferentes sustratos en un cultivo de lechuga en invernadero. Se utilizó un diseño en bloques completamente al azar (BCA) donde el factor de bloqueo fueron los sustratos y se establecieron tres tratamientos: T1: turba negra 30%, turba de coco 70%, T2: turba negra 70%, turba de coco 30% y T3: turba negra 50% y turba de coco 50%, para un total de 9 unidades experimentales, cada unidad experimental estuvo conformada por 10 plantas. Cada 8 días, durante 32 días, se determinó la altura de planta, masa fresca y seca de hojas y raíz, área foliar y cada 2 días, las unidades SPAD y la conductividad estomática (CE). Se presentaron diferencias significativas en las Unidades SPAD en el tiempo con un valor de 20,7. La CE presentó los mayores valores en T3 y T2 con valores de 354,2 y 366,2 mmol m-2 s–1, respectivamente. El T1 presentó el mayor valor de resistencia estomática (RE) con 7,5 m2 s mol–1. El área foliar y la altura no presentaron diferencias significativas. El T2 a los 15 días después de trasplante mostró los mayores valores de masa fresca de raíz (MFR), masa seca de raíz (MSR) y masa fresca de hojas (MFH) con 3,1 g, 0,106 g y 13,19 g, respectivamente. En la cosecha, el T3 mostró un 10% y 15% más de producción de MFH de lechuga, que los tratamientos T2 y T1, respectivamente. 


Visitas del artículo 1476 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Álvarez-Herrera, J., Rodríguez, S. y Chacón, E. 2007. Efecto de diferentes tamaños de esqueje y sustratos en la propagación del romero (Rosmarinus officinalis L.). Agronomía Colombiana. 25(2): 224-23
  2. Araméndiz-Tatis, H., Cardona-Ayala, C. y Correa-Álvarez, E. 2013. Efecto de diferentes sustratos en la calidad de plántulas de berenjena (Solanum melongena L.). Revista Colombiana de Ciencias Hortícolas. 7(1): 55-61
  3. Ardila, H. 2010.Estudio del crecimiento de la planta y del fruto de tres híbridos de tomate (Solanum lycopersicum L.) en tiempo fisiológico. Tesis de especialización. Facultad de Agronomía. Universidad Nacional de Colombia. Bogotá, Colombia.
  4. Arenas, M., Vavrina, C.S., Cornell, J.A., Hanton, E.A. y Hochmuth, G.J. 2002. Coir as an alternative to peat in media for tomato transplant production. HortScience 37(2): 309-312.
  5. Astiz, M., Uribarri, J., Aguado, A., Apesteguía, M. y Sádaba, S. 2010. Tomate hidropónico, Ed. Navarra Agropecuaria. Lima, Perú. 42 p.
  6. Birgi, A. 2015. Producción hidropónica de hortalizas de hoja. Instituto nacional de tecnología agropecuaria. Estación experimental Agropecuaria Santa Cruz. Área de producción Agrícola. Santa Cruz, Argentina.
  7. Campos, M. 2009. Efecto de la inoculación de sustratos con Trichoderma spp. sobre el crecimiento y producción de plantas de chile dulce (Capsicum annuum Linn), bajo ambiente protegido. Tesis. Instituto Tecnológico de Costa Rica. Costa Rica.
  8. Carranza, C., Lanchero, O., Miranda, D. y Chaves, B. 2009. Análisis del crecimiento de lechuga (Lactuca sativa L.) ‘Batavia’ cultivada en un suelo salino de la Sabana de Bogotá. Agronomía Colombiana. 27: 41-48.
  9. Cruz-Crespo, E., Can-Chulim, A., Sandoval-Villa, M., Bugarín-Montoya, R., Robles-Bermúdez, A., y Juárez-López, P. 2012. Sustratos en la horticultura. Revista Bio Ciencias. 2(2): 17-26.
  10. Fernández, M. 2010. Evaluación de sustratos de fibra de madera de pino frente a sustratos convencionales en cultivo hidropónico de tomate. Tesis. Universidad Pública de Navarra. Pamplona. España.
  11. FINAGRO, 2014.Perspectiva del sector agropecuario Colombiano. Equipo Técnico de Presidencia. Bogotá, Colombia.
  12. Fu, Y., Li, H., Yu, J., Liu, H., Cao, Z., Manukovsky, N. and Liu, H. 2017.Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. Var. youmaicai). Scientia Horticulturae 214: 51-57
  13. Garcés, G. 2013. Influencia de las altas temperaturas, la baja luminosidad y la época de siembra sobre el comportamiento fisiológico de dos cultivares de arroz (Oryza sativa L.). Tesis de Maestría. Universidad Nacional de Colombia Facultad de Agronomía, Escuela de posgrados Bogotá, Colombia.
  14. Guerrero, E., Revelo, J., Benavides, O., Chaves, G y Moncayo, C. 2014. Evaluación de sustratos en un cultivo de lechuga bajo un sistema hidropónico en el municipio de Pasto. Revista de Ciencias Agrícolas 31(1): 3-16.
  15. Gutiérrez, J. 2011.Producción hidropónica de lechuga con y sin recirculación de solución nutritiva. Tesis maestro en ciencias en horticultura. Universidad Autónoma de México. 66 p.
  16. Hattori, T., Sonobe, K., Inanaga, S., An, P., Tsuji, W., Araki, H., Eneji, A. and Morita, S. 2007.Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon. Environmental and Experimental Botany 60, 177-182.
  17. Hernández, T., Chocano, C., Moreno, J. y García, C. 2016. Use of compost as an alternative to conventional inorganic fertilizers in intensive lettuce (Lactuca sativa L.) crops—Effects on soil and plant. Soil and Tillage Research 160: 14-22.
  18. Jaramillo, J., Aguilar, P., Aguilar, P., Julián., Tamayo, E., Arguello., O., Guzmán, M y CORPOICA. 2016.
  19. Modelo Tecnológico para el cultivo de Lechuga bajo Buenas Prácticas Agrícolas en el Oriente Antioqueño. Medellín, p 40.
  20. Perez, A y Landeros, C. 2009.Agricultura y deterioro ambiental. Elementos 73: 19-25.
  21. Pinto, E., Almeida A., Aguiar, A. and Ferreira, E. 2014. Changes in macrominerals, trace elements and pigments content during lettuce (Lactuca sativa L.) growth: Influence of soil composition. Food Chemistry 152: 603-611.
  22. Resh, H. 2006. Cultivos hidropónicos. Madrid. Ed 5ta. Mundo Prensa. 364 p.
  23. Rivacoba, L. 2013.Evaluación de medidas de nitrógeno en la planta para su uso como sistema de recomendación de abonado nitrogenado en el cultivo de coliflor. Tesis Doctoral. Facultad de Ciencias. Estudios Agroalimentarios e Informática. Universidad de La Rioja. España.
  24. Ribeiro da Cunha, A., Leoschua, K., De Pádua Sousa, A y Martinez, R. 2015.Indice SPAD en el crecimiento y desarrollo de plantas de lisianthus en función de diferentes dosis de nitrógeno en ambiente protegido. IDESIA. 33(2): 97-105.
  25. Sigurnjak, I., Michels, E., Crappé, S., Buysens, S., Tack, F. and Meers, E. 2016. Utilization of derivatives from nutrient recovery processes as alternatives for fossil-based mineral fertilizers in commercial greenhouse production of Lactuca sativaL. Scientia Horticulturae 198: 267-276.
  26. Soto, F. 2007. Boletín del programa nacional sectorial de producción agrícola bajo ambientes protegidos. PRONAP. Costa Rica. 8p

Sistema OJS 3.4.0.3 - Metabiblioteca |