Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Microinjertación de naranja Valencia y lima Tahití

Micrografting of valencia orange and Tahiti lime



Cómo citar
Suárez, I. E., Álvarez Correa, C., & Lopez Diaz, C. (2021). Microinjertación de naranja Valencia y lima Tahití. Temas Agrarios, 26(1), 26-35. https://doi.org/10.21897/rta.v26i1.2556

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

La Revista permite al autor(es) mantener los derechos de explotación (copyright)  de sus artículos sin restricciones. El(os) autor(es) acepta(n) la distribución de sus artículos en la web, bajo acceso abierto a nivel local, regional e internacional; la  inclusión y difusión del texto completo, a través del Portal de RevistasRepositorio Institucional de la Universidad de Córdoba; y en todas las bases de  datos especializadas que la Revista considere pertinentes para su indexación, con  el fin de proporcionarle visibilidad y posicionamiento al artículo. Esta revista  provee acceso libre inmediato a su contenido bajo el principio de hacer disponible  gratuitamente la investigación al público, lo cual fomenta un mayor intercambio  de conocimiento global. 

Se autoriza la fotocopia de artículos para fines de uso académico o interno de las  instituciones, citando la fuente, para impresos dirija la solicitud a la Revista  Temas Agrarios. Facultad de Ciencias Agrícolas. Universidad de Córdoba.  Montería. Colombia,. Apartado aéreo No.354, correo electrónico:  revistatemasagrarios@correo.unicordoba.edu.co

Esta obra está bajo una licencia de Creative Commons Reconocimiento NoComercial 4.0 Internacional

Cristian Álvarez Correa
Claudia Lopez Diaz

Para determinar la viabilidad de microinjertación en plantas de naranja Valencia y lima Tahití como un método de propagación masiva de plantas, diferentes pasos del proceso de microinjertación fueron evaluados. Las semillas de mandarina Cleopatra fueron establecidas in vitro en medio semisólido MS (Murashige y Skoog) con, o sin, GA3, para evaluar su efecto en el porcentaje y el tiempo de germinación, las plantas de naranja Valencia y lima Tahití fueron tratadas con 1 mg l-1 BAP o podadas manualmente para evaluar el efecto sobre la producción de brotes vegetativos, y el efecto de tres posiciones del ápice meristemático en la superficie del patrón decapitado, en el centro, en un lado y en un corte inclinado, sobre el porcentaje de éxito fue evaluado. Las repeticiones de todos los experimentos fueron distribuidas con un diseño completamente al azar, los datos de brotes vegetativos fueron analizados con ANAVA y los promedios separados con la prueba de Tukey. Los resultados evidenciaron que el GA3 no afectó el porcentaje y tiempo de germinación y la poda incrementó estadísticamente el número de brotes vegetativos. Los porcentajes de éxito de microinjertos de naranja Valencia (28%) y lima Tahití (14%) son consistentes con los resultados de otros estudios para recuperar plantas libres de enfermedades; sin embargo, para propagación masiva, se recomienda en futuros estudios considerar la evaluación de condiciones in vitro como aumento en la concentración de sacarosa, adaptación in vitro de los ápices meristemáticos y adición de auxina, entre otros.


Visitas del artículo 681 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Acosta C. 2011. Propagación in vitro de árboles superiores de melina (Gmelina arborea Roxb.). Tesis Magister. Universidad de Córdoba, Montería.pnas.1208652109.
  2. Agronet, 2021. Resultados de las evaluaciones agropecuarias municipales del año 2017 del departamento de Córdoba
  3. Amelia, Z., Supriyanto., Wulandari, A. 2020. Effect of 6-BAP application on shoot production of Melaleuca alternifolia seedlings. IOP Conference Series: Earth and Environmental Science, Orlando, Florida, October de 2021, 1-6p.
  4. Al-Janabi, A., AL-Sagheer, S. and Baekar, H. 2016. Effect of Mechanical Scarification,Gibberellic Acid and Chilling on Germination of Local Orange Seeds Citrus sinensis L. Journal of Biotechnology Research Center 10(1):38-44p.
  5. Al-Musawi, M., Al-Moussawi, S. 2020. GA3 and Zn Impact on Germination and Seedling Growth of Acid Lime. Annals of Biology 36 (3): 406-411p.
  6. Albrecht, U., Bordas, M., Lamb, B., Meyering, B. and Bowman, K. 2017. Influence ofPropagation Method on Root Architecture and Other Traits of Young Citrus RootstockPlants. Hortscience 52(11):1569-1576p. https://doi.org/10.21273/HORTSCI12320-17
  7. Akhtar, S., Mekureyaw, N., Pandey, C., Roitsch, T. 2020. Role of Cytokinins for Interactions of Plants With Microbial Pathogens and Pest Insects. Journal Frontiers in Plant Science 10: 1-12p. https://doi.org/10.3389/fpls.2019.01777
  8. Astiari, N., Sulistiawati, N., Mahardika, I., Rai, I. 2019. Improving the quality fruit of Citrus cv. Siam out off-season through the application of fertilization and pruning. IOP Conference Series: Earth and Environmental Science, Orlando, Florida, October de 2019, 1-6p.
  9. Baron, D., Esteves. A., Pina, A., Ferreira, G. 2019. An overview of grafting re- establishment in woody fruit species. Scientia Horticulturae 243:84-91p. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . scienta.2018.08.012
  10. Chand, L., Sharma, S., Dalal, R., Poonia, A. 2013. In vitro shoot tip grafting in citrus species. A review. Agricultural Reviews 34(4):279-287p.
  11. Chaudhary, A., Ahlawat, T., Kumar, S., Jena, S., Patel, D. 2019. Effect of Gibberellic Acid on Germination and Vigour of Kagzi Lime Seedlings. Current Journal of Applied Science and Technology 38(6):1-8p.
  12. Chueca, P., Mateu, G., Garcerá, C., Fonte, A., Ortiz, C., Torregrosa A. 2021. Yield and EconomicResults of Different Mechanical Pruning Strategies on “Navel Foyos”Oranges in the Mediterranean Area. Agriculture 11: 1-12p. https://doi.org/10.3390/agriculture11010082
  13. D´Este, V., Axelsson, J., Yndgaard, F. and Solberg, S. 2019. Stratification, scarificationand gibberellic acid treatments of garden angelica (Angelica archangelica) sedesScience and technology47(3): 243-247p. https://doi.org/10.15258/sst.2019.47.3.01
  14. FAO (Food Agricultural Organization) 2020. Cultivos. Recovered from http://www.fao. org/faostat/es/#data/QC.
  15. Hussain, G., Raja, N., Wani, Z., Mirl, M., Rather, Z., Bhat, K. 2014. Micrografting for fruit crop improvement. African Journal of Biotechnology 13(25): 2472-2483p. https://doi.org/10.5897/AJB2013.13602
  16. Hussain, M., Raja, N., Maswani, Z., Iqbal, M., Ejaz, M., Yasmeen, F., Sohail. 2017. In vitro germination and biochemical profiling of Citrus reticulata in response to green synthesized zinc and cooper nanoparticles. IET Nanobiotechnology 11(7): 790 - 796p.
  17. ICA (Instituto Colombiano Agropecuario). 2019. Resolución 0012816 (21/08/2019). h t t p s : / / w w w . i c a . g o v . c o / getattachment/877b5bbb-0f20-4253- 9f7d-7b20f03e2629/2019R01668.aspx.
  18. Inglese, P., Sortino, G. 2019. Citrus History, Taxonomy, Breeding, and Fruit Quality. (Ed). Richard W. Hazlett, Oxford Research Encyclopedia of Environmental Science. https://doi.org/10.1093/acrefore/9780199389414.013.221
  19. Iftikhar, A., Ali, S., Yasmeen, T., Saleem, M., Zubair, M., Rizwan, M., Abdulaziz, H., Alayafi, A., Soliman, M. 2019. Effect of gibberellic acid on growth, photosynthesis and antioxidant defense system of wheat under zinc oxide nanoparticle stress. Environmental Pollution. 254.
  20. Kanwar, I., Kaul, M., Naruka, I., Singh, P. 2019. In vitro micrografting technique in sweet orange (Citrus sinensis) cv. Blood Red to produce virus free plants. Indian Journal of Agricultural Sciences 89(3):494-499.
  21. Khopkar, R., Nagaharshitha, D., Haldavanekar, P., Parulekar, Y. 2017. Studies on seed germination of pummelo (CITRUS GRANDIS L. OSBECK). International Journal of Agricultural 7(5):257-264.
  22. Khan, M., Usman, M., Waseem, R., Ali, M. 2002. Role of gibberellic acid (GA3) on citrus seed germination and study of some morphological characteristics. Pakistan Journal of Agricultural Research 39(2): 113-118.
  23. Kapari-Isaia, T. Minas, G. J. Polykarpou, D. Iosephidou, E. Arseni, S. Kyriakou, A. 2002. Shoot-tip Grafting in vitro for Eliminationof Viroids and Citrus psorosis virus in the Local Arakapas Mandarin in Cyprus. Fifteenth IOCV Conference, 2002, Short Communications International Organization of Citrus Virologists, p.417- 419.
  24. Marler, T. 2019. Serianthes nelsonii Seed Germination and Seedling Behavior are Minimally Influenced by Chemical and Light Treatment. Horticulturae 5(2), 1-7. https://doi.org/10.3390/horticulturae5020031
  25. Murashige, T., Skoog. F. 1962. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. https://doi.org/10.1111/j.1399-3054.1962. tb08052.x
  26. Miceli, A., Moncada, A., Sabatino. L., Vetrano, F. 2019. Effect of Gibberellic Acid on Growth, Yield, and Quality of Leaf Lettuce and Rocket Grown in a Floating System. Agronomy 9(7): 1-22p. https://doi.org/10.3390/agronomy9070382
  27. Navarro, L.; Roistacher, C. N., Murashige, T. 1975. Improvement of shoot-tip grafting in vitro for virus-free citrus. Journal of the American Society for Horticultural Science 100(5):471-479.
  28. Naz, A., Jaskani, M., Abbas, H., Qasim, M. 2007. In vitro studies on micrografting technique in two cultivars of citrus to produce virus free plants. Pakistan Journal of Botany 39(5): 1773-1778.
  29. Neelambari., Mandavia, C., Sree, S. 2018. Curative Effect of Ascorbic Acid and Gibberellic Acid on Wheat (Triticum astivum L.) Metabolism under Salinity Stress. International Journal of Current Microbiology and Applied Sciences 7(1): 522-533p.
  30. Obeidy, A., Smith, M. 1991. A Versatile New Tactic for Fruit Tree Micrografting. Americam Society for Horticultural Science 4: 91-95p. https://doi.org/10.21273/HORTTECH.1.1.91
  31. Parzaeis, J., Hedayat, M., Rastgoo, S. and Bayat, F. 2018. Evaluation rootstock,sucrose concentration and culture medium supporting systems in the micrografting andacclimatization of lime (Citrus aurantifulia). Journal of Agricultural Biotechnoly 10(2):1-17
  32. Prajapati, DG., Satodiya, BN., Desai, AB., Nagar, P. 2017. Influence of storage period and growing media on seed germination and growth of acid lime seedlings (Citrus aurantifolia Swingle) Cv. Kagzi. Journal of Pharmacognosy and Phytochemistry 6(4): 1641-1645.
  33. Robinson, A. 2020. Pruning Principles for High- Quality Citrus. https://citrusindustry. net/2020/11/23/pruning-principles-for- high-quality-citrus/
  34. Rout, S., Beura, S., Khare, N., Patra, S., Nayak, S. 2017. Effect of seed pre-treatment with different concentrations of gibberellic acid (GA3) on seed germination and seedling growth of Cassia fistula L. Journal of Medicinal Plants Studies 5(6). 135-138.
  35. Rehman, HU., Gill MIS. 2015. Micrografting of Fruit Crops-A Review Journal of Horticulture 02(03): 1-7p.
  36. Singh, K. 2018. Propagation of citrus species through cuttings: A review. Journal of Medicinal Plants Studies 6(1):167-172.
  37. Suarez, IE., Schnell, RA., Kuhn, DN., Litz, R. 2005. Micrografting of ASBVd-infected Avocado (Persea americana) plants. Plant Cell Tissue and Organ Culture 80: 179- 185p.
  38. Sayyad-Amin, P., Shahsavar A. 2019. Improvement of Seed Germination of Date-plum (Diospyros lotus L.) by Physical and Chemical Treatments. Journal of Chemical Health Risk. 9(1): 51-56. https://doi.org/10.22034/JCHR.2019.664164
  39. Shekafandeh, A., Sirooeenejad, S., Alsmoushtaghi E. 2017. Influence of Gibberellin on Increasing of Sodium Chloride Tolerance via Some Morpho- Physiological Changes in Two Olive Cultivars. Agriculturae Conspectus Scientificus 82(4): 367-373.
  40. Sridhar, D. and Venugopal S. 2019. Improvement of Fruit Crops through Micrografting.Advances in Agriculture Sciences. (Ed), AkiNik Publications, p 88-103.
  41. Vashisth, T., Chun, C., Ozores, M. 2020. Florida Citrus Nursery Trends and Strategies to Enhance Production of Field-Transplant Ready Citrus Plants. Horticulturae 6(1):1- 15.
  42. Vincent, C., Ritenour, M. 2019. Optimize Fresh Fruit Results With Selective Pruning. Citrus Industry.
  43. Wasielewski, J. and Balerdi, C. 2018. Types of asexual propagation. Tropical andSubtropical Fruit Propagation, Institution. UF/IFAS Extension, University of Florida,Institute of Food and Agricultural Sciences.https://edis.ifas.ufl.edu/pdffiles/HS/HS134900.pdf.
  44. Wu, G., Terol, J., Ibanez, V., López-García, A., Pérez-Román, E., Borredá, C., Domingo, C., Tadeo, F., Carbonell-Caballero, J., Alonso, R., Curk, F., Du, D., Ollitrault, P., Roose, M., Dopazo, J. Gmitter, F., Rokhsar, D., Talon, M. 2018. Genomics of the origin and evolution of Citrus. Nature 554:311-316.

Sistema OJS 3.4.0.3 - Metabiblioteca |