Determinação de amido e carboidrato em folhas de mangueira com o uso espectroscopia Vis-NIR.
Determination of starch and carbohydrate in mango leaves using Vis-NIR spectroscopy
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Mostrar biografía de los autores
A produção de manga apresenta desafios, como a maturação dos ramos da mangueira, que aliada a boa nutrição e bioquímicos envolvidos nesse processo como o carboidrato e o amido favorece o desenvolvimento do vegetal. A utilização de técnicas não destrutivas e rápidas para determinar os teores desses componentes na planta, como a espectroscopia, pode otimizar a realização das análises desses componentes. Diante disso, este trabalho teve como objetivo desenvolver modelos preditivos para determinação de teores de amido e carboidratos em folhas de mangueira “Palmer” com o uso da espectroscopia Vis-NIR submetidas a diferentes fontes de potássio. O trabalho foi desenvolvido na região do Vale do São Francisco, seguindo as seguintes etapas: (1) a amostragem das folhas; (2) análise espectrais; (3) determinação em laboratório dos teores de carboidratos e amido; e (4) desenvolvimento dos modelos preditivos de regressão e classificação. Os modelos preditivos de regressão utilizados foram a Regressão por Componentes Principais (PCR) e a Regressão por Quadrados Mínimos Parciais (PLSR). Também foram desenvolvidos modelos discriminante supervisionado para classificar as folhas da mangueira de acordo com as diferentes fontes potássicas utilizada, utilizando a análise discriminante linear (LDA). A espectroscopia Vis-NIR apresentou valores baixos para a avaliação não destrutivas de folhas de mangueira “Palmer” utilizando PCR e PLSR para predição de carboidrato e amido com R2 de 0,582 menor que os modelos considerados excelentes (R2 >0,90); O desenvolvimento de modelos de classificação não possibilitou a discriminação das diferentes fontes de potássio em folhas de mangueira “`Palmer” com precisão de 64,28%.
Visitas del artículo 122 | Visitas PDF
Descargas
- Barnes, R. J., dhanoa, M. S., Lister, S. J. 1989. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Appl Spectrosc 43(5): 772–777. https://doi.org/10.1366/0003702894202201
- Barreto, N. S. 2020. Aplicação da técnica de espectroscopia do visível e infravermelho próximo (Vis/NIR) no controle físico-químico da qualidade de vinhos produzidos no Submédio do Vale do São Francisco. Dissertação Mestrado em Ciência e Tecnologia de Alimentos, Universidade Federal de Sergipe- UFSE, São Cristovão.
- Cao, F., Wu, D., He,Y. 2010. Soluble solids contente and Ph prediction and varieties discrimination of grapes based on visible-near infrared spectroscopy. Comput. Electron. Agric, 71(6): 15-18. http://dx.doi.org/10.101/j.compag.2009.05.011
- Cavalcante, Í. H. L., Santos, G. N. F. Dos., Silva, M. A. Da., Martins, R. S., Lima, A. M. N., Modesto, P. I. R., Alcobia, A. M., SILVA, T. R. S., Araujo, E. A., R. A., Beckmann-Cavalcante, M. A. 2018. New approach to induce mango shoot maturation in Brazilian semi-arid environment. Journal of Applied Botany and Food Quality, 91: 281-286.https://doi.org/10.5073/JABFQ.2018.091.036
- Coombe, B. G. 1995. Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1(2): 100-110. https://doi.org/10.1111/j.1755-0238.1995.tb00086.x
- Costa, D. S., Mesa, N. F. O., Freire, M. S.; Ramos, R. P.; Medeiros, B. J. T. 2019. Development of predictive models for quality and maturation stage atributes of wine grapes usin vis-nir reflectance spectroscopy. Posthavest Biology and Technology, 150: 166-178. https://doi.org/10.1016/j.postharvbio.2018.12.010
- Curran, P. J. 1989. Remote sensing of foliar chemistry. Remote Sensing of Environment, 30(3): 271–278. https://doi.org/10.1016/0034-4257(89)90069-2
- Das, B. Sahoo R. N., Pargal S., Krishna G., Verma R., Chinnusamy V., Sehgal V. K., Gupta V. K., Traço S. K., Swain P. 2018. Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 192(5): 41–51.https://doi.org/10.1016/j.saa.2017.10.076
- De Bei, R., Fuentes, S., Sullivan, W., Edwards, E. J., Cozzolino, D. 2017. Rapid measurement of total non-structural carbohydrate concentration in grapevine trunk and leaf tissues using near infrared spectroscopy. Computers and Electronics in Agriculture, 136(15):176–183. https://doi.org/10.1016/j.compag.2017.03.007
- Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. 1956. Colorimetric Method for Determination of Sugars and Related Substances. Anaytical Chemistry, 28(3): 350-356, https://pubs.acs.org/doi/10.1021/ac60111a017
- Frey, L. A., Baumann, P., Aasen, H., Studer, B., Kolliker, R. 2020. A Non-destructive Method to Quantify Leaf Starch Content in Red Clover. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.56994
- Geladi, P., Kowalski, B. R. 1986. Partial least-squares regression: a tutorial. Anal. Chimica Acta, 185:1-17, 1986.
- Genisheva, Z., Quintelas, C., Mesquita, D. P., Ferreira, E. C., Oliveira, J. M., Amaral, A. L. 2018. New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR). Food Chemistry, 246: 172–178, https://doi.org/10.1016/j.foodchem.2017.11.015
- Gonzáles-Aguiar, D.,Colás-Sánchez, A., Rodriguez-López, O., Álvarez-Vázquez, D. L., Gattorno-Muñoz, S.,Chacón-Iznaga, Ahmed. 2020. Estimación De La Materia Orgánica En Suelo PardoMullido Medianamente Lavado Mediante Espectroscopia Vis-NIR. Centro Agrícola, 23-32. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0253-57852020000300023&lng=es&nrm=iso
- Gould, K., Jay-Allemand, C., Logan, B. A., Baissac, Y., Bidel, L. P. R. 2018. When are foliar anthocyanins useful to plants? Re-evaluation of the photoprotection hypothesis using Arabidopsis thaliana mutants that differ in anthocyanin accumulation. Environmental and Experimental Botany, 154(1): 11-22, https://doi.org/10.1016/j.envexpbot.2018.02.006
- Lohr, D., Tillmann, P., Druege, U., Zerche, S., Rath, T., Meinken, E. 2017. Non-destructive determination of carbohydrate reserves in leaves of ornamental cuttings by near-infrared spectroscopy (NIRS) as a key indicator for quality assessments. Biosystems Engineering, 158:51–63, https://doi.org/10.1016/j.biosystemseng.2017.03.005
- Martens, H., Martens, M. 2000. Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Quality and Preference, 11(1): 5–16, https://doi.org/10.1016/S0950-3293(99)00039-7
- Nakajima, S., Shiraga, K., Suzuki, T., Kondo, N., Ogawa, Y. 2019. Quantification of starch content in germinating mung bean seedlings by terahertz spectroscopy. Food Chemistry, 294(1): 203–208, https://doi.org/10.1016/j.foodchem.2019.05.065
- Neves, L., Moraes, D. M. 2005. Vigour And A-Amylase Analisis In Seeds Of Rice Cultivars Submitted To Several Treatments With Acetic Acid. Revista de Ciências Agroveterinárias, 4(1): 35–43,
- Novo, E. M. L. M. 2010. Sensoriamento remoto: princípios e aplicações. 3a edição ed. São Paulo: Blucher.
- Oliveira, G. P., Siqueira, S. L., Cecon, P. R., Salomão, L. C. C. 2018. Teores de carboidratos em mangueira “Ubá” submetida a diferentes doses de paclobutrazol. Revista de Ciências Agrárias, 41(3): 749–756, https://doi.org/10.19084/RCA18016
- Oliveira, M. B., Figueiredo, M. G. F., Pereira, M. C. T., Mouco, M. A. Do C., Ribeiro, l. M., Simões, M. O. M. 2019. Structural and cytological aspects of mango floral induction using paclobutrazol. Scientia Horticulturae, 262(27): 109057, https://doi.org/10.1016/j.scienta.2019.109057
- Oliveira, N., Tinini, R., Costa, D. S., Ramos, R., Wetterich, C., Teruel, B. 2021. Predictive models of chlorophyll content in sugarcane seedlings using spectral images. Engenharia Agrícola, 41(4):475–484 https://doi.org/10.1590/1809-4430-Eng.Agric.v41n4p475-484/2021
- Paz-Kagan, T., Shmilovitch, Z., Yermiyahu, U., Rapaport, T., Sperling, O. 2020. Assessing the nitrogen status of almond trees by visible-to-shortwave infrared reflectance spectroscopy of carbohydrates. Computers and Electronics in Agriculture, 178:105755. https://doi.org/10.1016/j.compag.2020.105755
- Souza, A. C. F., Lima, J. R. F. 2023. Comportamento dos preços de manga Palmer ao produtor do Vale do Submédio São Francisco. Revista de Economia e Sociologia Rural, 61(1): 1-20. https://doi.org/10.1590/1806-9479.2021.250161
- Souza, de A. P., Ferreira, I. J. S., Costa, D. dos S. 2022. Determination of quality atributes and ripening stage using Vis-NIR spectroscopy in intact seriguela and umbu fruits. Revista Engenharia na Agricultura, 30: 127-141. https://doi.org/10.13083/reveng.v3O-0i1.12929
- Souza, I. C. O., Maia, G. A. M., Almeida. N. M. Abreu Neto, J. C., Freire, G. S. S. 2020. Sedimentary dynamic and composition of a tidal channel in a tropical hot semi-arid environment, NE Brasil. Anuário do Instituto de Geociência – UFRJ, 43: 144-155. https://doi.org/10.11137/2020_4_144_155.