Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Contenido de fenoles totales y actividad antioxidante de extractos foliares de Ipomoea pes-caprae (Convolvulaceae).

Total phenol content and antioxidant activity of Ipomoea pes-caprae (Convolvulaceae) foliar extracts.



Cómo citar
Hernández- Herrera, K. P., & Salgado-Chávez, J. A. (2022). Contenido de fenoles totales y actividad antioxidante de extractos foliares de Ipomoea pes-caprae (Convolvulaceae) . Temas Agrarios, 27(2), 354-365. https://doi.org/10.21897/rta.v27i2.3137

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Kendry. P Hernández- Herrera
José. A Salgado-Chávez

El departamento de La Guajira (Colombia) presenta gran diversidad de especies vegetales, entre éstas, especies halófilas y psamófilas como Ipomoea pes-caprae (L.) R.Br., la cual se distribuye en la zona costera del departamento. Se desconocía si I. pes-caprae produce fenoles en concentraciones lo suficientemente altas, bajo las condiciones ambientales de La Guajira, como para considerar su aprovechamiento; por ende, el objetivo de esta investigación fue establecer la influencia de los periodos climáticos sobre la producción de fenoles totales y el potencial antioxidante de los extractos foliares de esta especie. Se tomaron muestras de tejido foliar durante un año y se sometieron a extracción con metanol. Para establecer la concentración de fenoles totales se utilizó el método de Folin-Ciocalteau y se correlacionó con la precipitación y temperatura mensual. También se estimó el porcentaje de inhibición de los extractos sobre el radical DPPH. Los resultados obtenidos evidenciaron que el contenido de fenoles varió durante todo el año, siendo febrero de 2019 donde se presentó la mayor concentración de estas sustancias (18,41%), coincidiendo con un periodo de bajas precipitaciones y menor temperatura. Por otra parte, la actividad antioxidante de los extractos fue de 83,79%. Se concluyó que la temperatura afecta parcialmente la concentración de fenoles totales, mientras que la precipitación no tuvo efectos significativos; además, este estudio comprueba la posibilidad de utilizar I. pes-caprae como fuente de sustancias con actividad antioxidante de bajo costo y se constituye como base para proyectar futuras investigaciones dirigidas a la evaluación y aprovechamiento de otras convolvuláceas presentes en La Guajira.


Visitas del artículo 228 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Ahmad, M., Attiq-ur-Rehman, S., Tareen, R., Khan, N. Baqi, A. y Manan, A. 2019 Qualitative and quantitative determination of phytochemicals in Convolvulus leiocalycinus and Haloxylon griffithii. Pure and Applied Biology (PAB) 8(1): 733-741.
  2. Akinniyi, G., Lee, J., Kim, H., Lee, J. y Yang, I. 2022. A Medicinal Halophyte Ipomoea pes-caprae (Linn.) R. Br.: A Review of its Botany, Traditional Uses, Phytochemistry, and Bioactivity. Marine Drugs 20(5): 329.
  3. Atthamid, N., Yusuf, M., Indriati, S., Latief, M. y Rifai, A. 2020. Kopigmentasi antosianin dan polifenol dari ubi jalar ungu (Ipomoea batatas L.) menggunakan nakaseinat. Jurnal Sains dan Teknologi Pangan 5(2): 2760-2771.
  4. Bueno, M., Lendínez, M., Calero, J. y Del Pilar Cordovilla, M. 2020. Salinity responses of three halophytes from inland saltmarshes of Jaén (Southern Spain). Flora 1(1): 2-12. DOI: https://doi.org/10.1016/j.flora.2020.151589.
  5. Cervantes, R., Barragán, M. y Chaquilla, G. 2019. Evaluación de antioxidantes en el té de hojas de camote morado (Ipomoea batatas L.). Revista Tecnología en Marcha 32(4): 51-59.
  6. Da Silva, B., Victório, C. y Arruda, R. 2021. Anatomical and Micromorphological Traits in Leaf Blade of Halophytes from a Brazilian Sandy Coastal Plain. Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture 933-962. https://doi.org/10.1007/978-3-030-57635-6_30.
  7. De menezes, A., Ventura, M., de Souza Castro, C., Taques, A. y Alves, I. 2022. Phytochemistry and biological activities of the floral hydroethanolic extract of Ipomoea carnea Jacq. (Convolvulaceae). Brazilian Journal of Science 1(2): 1-5.
  8. Devall, M. 1992. The biological flora of coastal dunes and wetlands. 2. Ipomoea pes-caprae (L.) Roth. Journal of Coastal Research 8(2): 442-456.
  9. Ehsen, S., Rizvi, R., Abideen, Z., Aziz, I., Gulzar, S., Gul, B., Khan, M. y Ansari, R. 2017. Physiochemical responses of Zaleya pentandra (L.) Jeffrey to NaCl treatments. Pak. J. Bot. 49(3): 801-808.
  10. Esan, V. y Omilani, O. 2018. Evaluación de cuatro variedades de camote (Ipomoea batatas L.) para determinar su adaptabilidad y productividad en Iwo, estado de Osun. Asian Journal of Agricultural and Horticultural Research 1(1): 1-8.
  11. Franková, H., Šnirc, M., Jančo, I., Čeryová, N., Ňorbová, M., Lidiková, J. y Musilová, J. 2022. Total polyphenols and antioxidant activity in sweet potatoes (Ipomoea batatas L.) after heat treatment. Journal of microbiology, biotechnology and food sciences 11(6): e5356-e5357.
  12. Fuentes, J., Gordo, D., Reyes, S. y González, O. 2017. Efecto del estado de maduración sobre el contenido de polifenoles totales en frutos de Solanum marginatum. Investigación, Innovación, Ingeniería 3 (2): 86-97. https://doi.org/10.24267/23462329.220.
  13. Gálvez, J., Sánchez, R., Ruiz, Y., Molina, Y. y De la Torre, M. 2013. Antioxidant potential of phenolic extracts of Theobroma cacao L.(cocoa). Revista Cubana de Planta Medicinales 18(2): 201-215.
  14. Gao, Lu, LI Xiangge, QI Hengnian, Zang Ying, JIA Liangquan, Zhao Guangwu, Tang Qizhe. y Zheng Wen. 2022 Advances in seed respiration detection and its application. Journal of Zhejiang A&F University.
  15. Guo, J., Li, Y., Han, G., Song, J. y Wang, B. 2018. NaCl markedly improved the reproductive capacity of the euhalophyte Suaeda salsa. Funct. Plant Biol. 44: 350-361. https://doi.org/10.1071/FP17181.
  16. Hernández, S., Marino, L., Isern, D., Coria, I. y Irurzun, I. 2019. Flavonoides: aplicaciones medicinales e industriales. Invenio 22: 11-27.
  17. Holguin, R. J., Medina, D., Ghasemi, M. y Rueda, E. O. 2021. Salt tolerant plants as a valuable resource for sustainable food production in arid and saline coastal zones. Acta Biológica Colombiana 26(1): 116-126.
  18. Im, Y., Kim, I. y Lee, J. 2021. Phenolic composition and antioxidant activity of purple sweet potato (Ipomoea Batatas (L.) Lam.): Varietal comparisons and physical distribution. Antioxidants 10(3): 462.
  19. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). 2019. Tiempo y clima. www.ideam.gov.co/web/ tiempo y clima.
  20. International Atomic Energy Agency (IAEA). 2000. Quantification of tannins in tree foliage. FAO/IAEA working document, Viena (Austria), 26 p.
  21. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). 2005. ICH Harmonised Tripartite Guideline, validation of analytical procedures: text and methodology Q2(R1). Current Step 4 version, Parent Guideline dated 27 October 1994 (Complementary Guideline on Methodol ogy dated 6 November 1996 incorporated in November 2005), Unión Europea, 17 p.
  22. Kim, M. Y., Lee, B. W., Lee, H. U., Lee, Y. Y., Kim, M. H., Lee, J., Kim, M, Lee J, Lee B, Woo, K. y Kim, H. J. 2019. Phenolic compounds and antioxidant activity in sweet potato after heat treatment. Journal of the Science of Food and Agriculture 99(15): 6833-6840.
  23. Kobayashi, T., Kurata, R. y Kai, Y. 2019. Seasonal Variation in the Yield and Polyphenol Content of Sweet Potato (Ipomoea batatas L.) Foliage. The Horticulture Journal 88(2): 270-275.
  24. Liu, Y., Dai, X., Zhao, L., Huo, K., Jin, P., Zhao, D., Huo, K., Jin, P., Zhao, D., Zhou, Z., Tang., Xiao, S. y Cao, Q. 2020. RNA-seq reveals the salt tolerance of Ipomoea pes-caprae, a wild relative of sweet potato Revista de Fisiología Vegetal, 255, 153-276. https://doi.org/10.1016/j.jplph.2020.153276.
  25. Luján, C., Martínez, A., Ortega, J. y Castro, F. 2010. Componentes químicos y su relación con las actividades biológicas de algunos extractos vegetales. Química Viva 9(2): 86-96.
  26. Makori, S. I., Mu, T. H. y Sun, H. N. 2020. Total polyphenol content, antioxidant activity, and individual phenolic composition of different edible parts of 4 sweet potato cultivars. Natural Product Communications 15(7): 1-12.
  27. Malakar, C. y Choudhury, P. 2015. Pharmacological potentiality and medicinal uses of Ipomoea aquatica Forsk: a review. Asian J. Pharm. Clin. Res. 8(2): 60-63.
  28. Matunog, V. y Bajo, L. 2013. Phytochemical screening and antioxidant potential of “Beach morning glory” Ipomoea pes-caprae (L.) roth leave extract. Journal Multidisiplinary Studies 1(1): 1-18.
  29. Messina, C., Renda, G., Laudicella, V., Trepos, R., Fauchon, M., Hellio, C. y Santulli, A. 2019. From ecology to biotechnology, study of the defense strategies of algae and halophytes (from Trapani Saltworks, NW Sicily) with a focus on antioxidants and antimicrobial properties. International journal of molecular sciences 20(4): 2-18. https://doi.org/10.3390/ijms20040881.
  30. Parra, V., Abdala, L., Téllez, P., Celaya, N., Salinas, L. y Alonso, C. 2017. Fenología de floración y visitantes florales de especies herbáceas. Ecología Funcional de la Reserva de la Biósfera de Ría Lagartos, 6(1): 105-122.
  31. Pérez, Y., Amaro, D., Robledo, L., Martínez, M. y Rondón, A. 2021. Caracterización fitoquímica y antibacteriana de cinco plantas arvenses presentes en la provincia de Matanzas, Cuba. Centro Agrícola 48(3): 32-42.
  32. Qasim, M., Abideen, Z., Adnan, M., Gulzar, S., Gul, B., Rasheed, M. y Khan, M. 2017. Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. South African Journal of Botany, 110, 240-250.
  33. Qasim, M., Aziz, I., Rasheed, M., Gul, B. y Khan, M. 2016. Effect of extraction solvents on polyphenols and antioxidant activity of medicinal halophytes. Pak. J. Bot. 48(2): 621-627.
  34. Roby, M., Sarhan, M., Selim, K. y Khalel, K. 2013. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Industrial Crops and Products 43: 827-831. https://doi.org/10.1016/j.indcrop.2012.08.029.
  35. Romero, K. 2021. Sobre las especies de Ipomoea (Convolvulaceae). Centro 13: 12-18.
  36. Rosado, J. 2009. Farmacopea Guajira, Cosmovisión y usos de las plantas medicinales por los Wayuu. Editorial Gente nueva, Colombia. 460 p.
  37. Saikia, J., Sarmah, S., Bordoloi, P., Gogoi, C. y Goswamee, R. 2018. Reductant free synthesis of silver-carbon nanocomposite using low temperature carbonized Ipomoea carnea stem carbon and study of its antibacterial property. Journal of environmental chemical engineering 6(4): 4226-4235.
  38. Salas, L., Borroel, V., Ramírez, M. y Moncayo, M. 2018. Efecto de la adición de ácido ascórbico y té de composta en la producción y capacidad antioxidante de forraje hidropónico de maíz. Nova Scientia 10(1): 47-63.
  39. Salgado, J., Palacio, A. y Valero, N. 2020. Actividad antioxidante e influencia del periodo climático sobre el contenido de polifenoles totales en Merremia aegyptia. Biotecnología en el Sector Agropecuario y Agroindustrial 18(2): 82-93.
  40. Salmerón, E., Garrido, J. y Manzano, F. 2020. Worldwide Research Trends on Medicinal Plants. International Journal of Environmental Research and Public Health 17(10): 3376. https://doi.org/10.3390/ijerph17103376
  41. Sasaki, Y. F., Kawaguchi, S., Kamaya, A., Ohshita, M., Kabasawa, K., Iwama, K. y Tsuda, S. 2002. The comet assay with 8 mouses organs: results with 39 currently used food additives. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 519(1-2) https://doi.org/10.1016/S1383-5718(02)00128-6
  42. Selvam, N. y Acharya, M. 2015. Review of Ipomoea pes-tigridis L.: traditional uses, botanical characteristics, chemistry and biological activities. Int. J. Pharm. Sci. Res 6: 1443-1448.
  43. Shah, P., Awasthi, H., Kunwar, K. y Kalauni, S. K. 2021. Phytochemical analysis and antioxidant activity of Ipomoea aquatica from Ghodaghodi wet land area, Nepal. International Journal of Herbal Medicine 9(2): 23-27.
  44. Stanković, M., Jakovljević, D., Stojadinov, M. y Stevanović, Z.D. 2019. Halophyte species as a source of secondary metabolites with antioxidant activity. En: Hasanuzzaman, M., Nahar, K., Öztürk , M. (eds) Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes. Springer, Singapore. https://doi.org/10.1007/978-981-13-3762-8_14
  45. Vidal, A.; Zaucedo, A. y de Lorena, M. 2018. Propiedades nutrimentales del camote (Ipomoea batatas L.) y sus beneficios en la salud humana. Revista Iberoamericana de Tecnología Postcosecha 19(2):132-146.
  46. Xi, L., Mu, T. y Sun, H. 2015. Preparative purification of polyphenols from sweet potato (Ipomoea batatas L.) leaves by AB-8 macroporous resins. Food Chemistry 172: 166-174.
  47. Yakkala, G. y Rao, M. 2019. Antibacterial activity of plant extracts and silver mediated nano particles of Ipomoea pes caprae and Spinifex littoreus. International Journal of BioPharma Research 8(3): 2514-2517.
  48. Yang, L., Wen, K., Ruan, X., Zhao, Y., Wei, F. y Wang, Q. 2018. Response of plant secondary metabolites to environmental factors. Molecules 23(4): 762-764. https://doi.org/10.3390/molecules23040762
  49. Yuan, F., Guo, J., Shabala, S. y Wang, B. 2019. Reproductive physiology of halophytes: current standing. Frontiers in plant science, 1954(9): 2-13. https://doi.org/10.3389/fpls.2018.01954

Sistema OJS 3.4.0.3 - Metabiblioteca |