Skip to main navigation menu Skip to main content Skip to site footer

Bioconversion of xylitol to xylose by Candida guilliermondii using rice (Oriza sativa) husk.

Bioconversión de Xilosa a Xilitol por Candida Guilliermondii Empleando Cascarilla de Arroz (Oriza sativa).



How to Cite
Herazo, I., Ruiz, D., & Arrazola Paternina, G. S. (2009). Bioconversion of xylitol to xylose by Candida guilliermondii using rice (Oriza sativa) husk. Sour Topics, 14(2), 23-32. https://doi.org/10.21897/rta.v14i2.673

Dimensions
PlumX
Irina Herazo
Danella Ruiz
Guillermo Segundo Arrazola Paternina

The objective was to obtain xylitol from hydrolyzed rice husk by fermentation batch with native stock of Candida guilliermondii isolated from corozo fruit (Bactris guineensis). The study was fractionated in two parts: Obtaining of hemucelulosic hydroyzed by acid way from the husk, previously tried, where the effects of sulphuric acid concentration (1, 2 and 3% (p/v), the time of hydrolysis (10, 20 and 30 minutes) and the husk diameter (1.600 - 800 µm, 800 – 500 µm and 500 – 250 µm) reducing sugars production were evaluated. It was determined that hydrolyzed obtained at 30 minutes, 2% of sulphuric acid and 800 – 500 µm diameter husk particle produced majors reducing sugars content (32,5 g L-1) and of xylose (9,9 g L-1). The second part consisted of obtaining xylitol using the selected hydrolyzed fermenting under the following parameters: temperature 30 ºC, environment pH 5,8, shaking at 120 rpm, initial xylose concentration of 27,5 g L-1 and cell concentration of 3 g L-1. Xylitol production was evaluated using Light Chromatography (TLC) and High Performance Liquid Chromatography (HPLC). According to the statistic analyses the time of fermentation had a significant effect (Pr< 0.05) on xylitol production observing that when increasing fermentation time xylitol concentration on the hydrolyzed increases as well. Xylitol production was low, reachin the highest peak (2,6 g L-1) after 120 hours fermentation.

Article visits 1503 | PDF visits


Downloads

Download data is not yet available.
  1. Aguiar, W., Faria, L., Araujo, O. y Pereira, N. 2002. Growth model and prediction of oxigen transfer rate as a function of inoculum size for Xylitol production from D-xylose for Candida gilliermondii. Biochemical Engineering Journal 12(1):49-59.
  2. Fennema, O. 1993. Química de los alimentos. Editorial Acribia S.A., Zaragoza, p23-24.
  3. Keikhosro, K., Shauker, K. y Mohammad, J. 2006. Conversión of rice straw to sugars by dilute-acid hydrolysis. Biomass and Bioenginnering (30):247-253.
  4. Mäkinen, K. 2000. Can the pentitol-hexitol theory explain the clinical observation made with xylitol. Medical hypotheses (54):603-613.
  5. Martínez, E., Villarreal M., Almeida, J., Solenzal, A., Canilha, L. y Mussato, S. 2002. Uso de diferentes materias primas para la producción biotecnológica de xilitol. Ciencia y Tecnología Alimentaria 3(5):295–301.
  6. Mussato, S. y Roberto, I. 2004. Kinetic behavior of Candida guilliermondii yeast during xylitol production from highly concentrated hydrolysate. Process biochemistry 39:1433–1439.
  7. Mussatto, S., Dragone, G. y Roberto, I. 2005. Influence of the toxic compounds present in brewer’s spent grain hemicellulosic hydrolysate on xylose-to-xylitol bioconversion by Candida guilliermondii. Process Biochemestry 40:3801-3806.
  8. Parajo, J., Domínguez H. y Domínguez J. 1998a. Biotechnological production of xylitol. Part 3: operation in culture media made from lignocellulose hydrolysates. Bioresource Technology 66:25-40.
  9. Roberto, I., Mussatto, S. y Rodríguez, R. 2003. Dilute-Acid Hydrolysis for Optimization of Xylose Recovery from Rice straw in a Semi-Pilot Reactor. Industrial Crops And Products 17:171-176.
  10. Sampaio, F., Mantovani, H., Passos, F., De Moraes, C. y Converti, A. 2005. Bioconversion of D-xylose to Xylitol by Debaryomices hansenii UFV-170. Process Biochemistry 40(11):3600-3606.
  11. Santos, J., Carvalho, W., Silva, S. y Converti, A. 2003. Xylitol production from sugarcane bagasse hydrolysate in fluidized bed reactor, effect o air flowrate. Biochemical Engineering Journal 25:25-31.
  12. Silva, C. y Roberto, I. 2001a. Optimization of xylitol production by Candida guilliermondii FTI-20037 using response surface methodology. Process Biochemestry 36:1119-1124.
  13. Silva, C. y Roberto, I. 2001b. Improvement of xylitol by Candida guilliermondii FTI 20037 previously adapted to rice straw hemicellulosic hydroliysate. Applied Microbiology 32(4):248-252.
  14. Silva, C., Mussatto, S. y Roberto I. 2005. Study of xylitol production by Candida guilliermondii on a bench bioreactor. Journal of Food Engineering 75:115–119.
  15. Timothy, D. y Bruce S. 1999. Xylitol production from corn fibre hydrolyzates by a two-stage fermentation process. Process Biochemestry 35:765-769.
  16. Yufera E. 2002. Tecnología de Cereales. Editorial Acribia, Zaragoza, 337p.

Sistema OJS 3.4.0.3 - Metabiblioteca |