Toxicidad de nanopartículas inorgánicas sobre los microorganismos del suelo con importancia agrícola. una revisión

Contenido principal del artículo

Autores

Sixta Palencia Enrique Combatt Caballero Manuel Palencia

Resumen

El continuo avance de la nanotecnología así como sus aplicaciones en el mejoramiento de la agricultura son una realidad; sin embargo, la información que se posee del impacto de este tipo de tecnología sobre los sistemas biomoleculares es muy escasa. El objetivo del presente documento es construir, desde un punto de vista molecular, un panorama del estado actual de las investigaciones en torno al efecto de las nanopartículas metálicas sobre los microorganismos (MOs) y de este modo contribuir, desde una base teórica, al entendimiento de las posibles interacciones que tienen lugar entre estos materiales y los sistemas biomoleculares de los MOs cuando este tipo de sustancias son liberadas al medioambiente, en particular, en agroecosistemas direccionados a la producción de alimentos. Se concluye que la incertidumbre asociada al efecto de las nanopartículas metálicas (M-NPs) sobre los MOs sigue siendo muy grande, y que en consecuencia, mayores estudios deben ser realizados. En términos generales, las M-NPs pueden interaccionar con biomoléculas mediante diferentes mecanismos que pueden operar de forma simultánea, siendo amplio el espectro de variables que determinan su efecto.

Palabras clave:

Detalles del artículo

Licencia

La Revista permite al autor(es) mantener los derechos de explotación (copyright) de sus artículos sin restricciones. El(os) autor(es) acepta(n) la distribución de sus artículos en la web y en soporte papel (300 ejemplares por número), bajo acceso abierto a nivel local, regional e internacional; la inclusión y difusión del texto completo, a través del Portal de Revistas y Repositorio Institucional de la Universidad de Córdoba; y en todas las bases de datos especializadas que la Revista considere pertinentes para su indexación, con el fin de proporcionarle visibilidad y posicionamiento al artículo.

Esta revista provee acceso libre inmediato a su contenido bajo el principio de hacer disponible gratuitamente la investigación al publico, lo cual fomenta un mayor intrcambio de conocimiento global.

Se autoriza la fotocopia de artículos para fines de uso académico o interno de las instituciones, citando la fuente, para impresos dirija la solicitud a la Revista Temas Agrarios. Facultad de Ciencias Agricolas. Universidad de Córdoba. Monteria. Colombia,. Apartado aéreo No.354, correo electronico: revistatemasagrarios@correo.unicordoba.edu.co

Referencias

An, H. and Jin, B. 2012. Prospects of nanoparticle–DNA binding and its implications in medical biotechnology, Biotechnology Advances; 30:1721-1732

Bang, S., Lee, T., Lee, S., Kim, P. and Kim, J. 2011. Toxicity assessment of titanium (IV) oxide nanoparticles using Daphnia magna (Water Flea), Environmental health and toxicology; 26:c2011002

Bardhan, M., Mandal, G. y Ganguly, T. 2009. Steady state, time resolved, and circular dichroism spectroscopic studies to reveal the nature of interactions of zinc oxide nanoparticles with transport protein bovine serum albumin and to monitor the possible protein conformational changes. Journal of Applied Physic; 106:034701

Barrere, R., D´Onofrio, M., Matas, L. y Marcotrigiao, G. 2011. La Nanotecnología en Iberoamérica, situación actual y tendencias. Observatorio Iberoamericano de Ciencia, Tecnología e Innovación del Centro de Altos Estudios Universitarios de la OEI

Basu, S., Jana, S., Pande, S. y Pal, T. 2008. Interaction of DNA bases with silver nanoparticles: Assembly quantified through SPRS and SERS. Journal of Colloid and Interface Science; 321:288- 293

Chatterjee, T., Chakraborti, S., Joshi, P., Singh, S., Gupta, V. y Chakrabarti P. 2010. The effect of zinc oxide nanoparticles on the structure of the periplasmic domain of the Vibrio cholerae ToxR protein. Febs Journal; 277:4184-4194

Cho, E., Zhang, Q. y Xia, Y. 2011. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nano; 6:385-391

Dawson, K., Salvati, A. y Lynch, I. 2009. Nanotoxicology: Nanoparticles reconstruct lipids. Nat Nano; 4:84-85
Devlin, T. 2004. BIOQUÍMICA: APLICACIONES CLÍNICAS. Cuarta edición. Reverte S. A. USA

Ezanka, P. Záruba, K. y Král V. 2011. Supramolecular chirality of cysteine modified silver nanoparticles. Colloids and surface A: Physicochemical and Engineering Aspects, 374:77-83

Fang, J., Shan, X., Wen, B., Lin, J. y Owens, G. 2009. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns, Environmental Pollution; 157:1101-1109

Frejo, M. T., Díaz, M. J., Lobo, M., García, J. y Capó, M. 2011. Nanotoxicología ambiental: retos actuales, Medicina Balear; 26: 36-46

Gondikas, A., Morris, A., Reinsch, B., Marinakos, S., Lowry, G. y HsuKim, H. 2012. Cysteine-Induced Modifications of Zero-valent Silver Nanomaterials: Implications for Particle Surface Chemistry, Aggregation, Dissolution, and Silver Speciation. Environmental Science & Techonology; 46(13):7037–7045

Gheshlaghi, Z., Riazi, G., Ahmadian, S., Ghafari, M. y Mahinpour, R. 2008. Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein. Acta Biochimical Biophysical Sin (Shangai); (40):777-782

Glibitskiy, G., Jelali, V., Semenov, M., Roshal, A., Glibitskiy, D. and Yu O. 2012. Interaction of DNA with silver nanoparticles. Ukranian Journal of Physic; 57( 7):695-699

Gojova, A., Guo, B., Kota, R., Rutledge, J., Kennedy, I. and Barakat, A. 2007. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: Effect of particle composition. Environmental Health Perspective; 115:403-409

Gutarowska, B., Skora, J., Zduniak, K. and Rembisz, D. 2012. Analysis of the sensitivity of microorganisms contaminating museums and archives to silver nanoparticles. Int. Biodeterior. Biodegrad; 68: 7-17

Handy, R., Von der Kammer, F., Lead, J., Hassellov, M., Owen, R. and Crane, M. 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology; 17: 287-314

Herzog, E., Byrne, H., Davoren, M., Casey, A., Duschl, A. and Oostingh, G. 2009. Dispersion medium modulates oxidative stress response of human lung epithelial cells upon exposure to carbon nanomaterial samples. Toxicology Applied Pharmacology; 236:276-281

Hullmann, A. 2006. The economic development of nanotechnology - An indicator based analysis, European Commission, Unit "Nano S&T - Convergent Science and Technologies, Alemania.
IUPAC.1995.Recommended terminology for the description of carbon as a solid. PAC, 1995, 67, 473. http://goldbook.iupac. org/G02684.html

Jiang, G., Shen, Z., Bao, Y., Chen, J. and He, T. 2011. Toxicological assessment of TiO2 nanoparticles by recombinant Escherichia coli bacteria. J. Environemtal monitoring; 13:42-28

Ju-Nam, Y. and Lead, R. 2008. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Science of the total environment; 396-414

Kopac, T., Bozgeyik, K. and Yener, J. 2008. Effect of pH and temperature on the adsorption of bovine serum albumin onto titanium dioxide. Colloids Surface A Physicochemical Engineering Aspects; 322:19-28

Lacerda, S.; Park, J., Meuse, C., Pristinski, D., Becker, M., Karim, A. and Douglas J. 2009. Interaction of Gold Nanoparticles with Common Human Blood Proteins. ACS Nano; 4:365-379

Levard, C., Matt, E., Lowry, G. and Brown, G. 2012. Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity. Environmetanl Science & Technology; 46: : 6900- 6914

Lin, J., Zhang, H., Chen, Z. and Zheng, Y. 2010. Penetration of Lipid Membranes by Gold Nanoparticles: Insights into Cellular Uptake, Cytotoxicity, and Their Relationship. ACS Nano; 4(9):5421-5429

Lundqvist, M., Sethson, I. and Jonsson, B. 2004. Protein Adsorption onto Silica Nanoparticles. Conformational Changes Depend on the Particles’ Curvature and the Protein Stability. Langmuir; 20:10639-10647

Mansoob, M., Kalathil, S., Lee, J. and Hwan, M. 2012. Synthesis of Cysteine Capped Silver Nanoparticles by Electrochemically Active Biofilm and their Antibacterial Activities. Bulletin Korean Chemical Society 22:2592-2596.

Maynard, A. and Warheit, M. 2011. The New Toxicology of Sophisticated Materials: Nanotoxicology and Beyond, Toxicological Sciences; 120: 109–129

Mohanraj V. and Chen Y. 2006. Nanoparticles- A review, Tropical Journal of Pharmaceutical Research; 59: 561-573

Molins, R. 2008. Oportunidades y amenazas de la nanotecnología para la salud, los alimentos, la agricultura y el ambiente, Comunica-Perspectivas, Innovación y Tecnología; 38-53.

Moore, M. 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?. Environment International; 32: 967-976

Mukherjee, S., Menegazzo, N., Brooksh, K., Dhurjati, P., Smorodin, V. y Nohe, A. 2012. Synthesis of L-Cysteine Stabilized Silver Nanoparticles and Their Effects on Cell Viability. Advanced Science Letters; 6:26-33

Nowacs, B. 2009. The behavoior and effects of nanoparticles in the environment. Environmental pollution; 1 (57):1063- 1064

Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W. and Cox C. 2004. Translocation of Inhaled Ultrafine Particles to the Brain. Inhalation Toxicology; 16:437-445

OMS y FAO. 2011. Informe Reunión conjunta FAO/OMS de expertos acerca de la aplicación de la nanotecnología en los sectores alimentario y agropecuario: posibles consecuencias para la inocuidad de los alimentos. Roma

Park, S., Lee, S., Lee, J., Sim, S., Gu, M., Yi J. and Lee, J. 2012. Toxic effects of titanium dioxide nanoparticles on microbial activity and metabolic flux, Biotechnology and bioprocess engineering; 17:276-282

Railsback, J., Singh, A., Pearce, R., McKnight, T., Collazo, R., Sitar, Z., Yingling, Y. and Melechko, A. 2012. Weakly Charged Cationic Nanoparticles Induce DNA Bending and Strand Separation. Advanced Materials; 24:4261-4265

Roiter, Y., Ornatska, M., Rammohan, A, Balakrishnan, J., Hein, D. and Minko, S. 2008. Interaction of Nanoparticles with Lipid Membrane. Nanoletters 8 (3) 941-944.

Sánchez, J., Guerrero, H., Marín, S., Tamayo, R. y Cosme, M. 2006. Nano: nanotecnología en España, Comunidad de Madrid

Santhosh, P., Penic, S., Genova, J., Iglic, A., Kralj-Iglic, V. and Ulrih, N. 2012. A study on the interaction of nanoparticles with lipid membranes and their influence on membrane fluidity. Journal of Physics. Conference series 2012; (398): 012034

Saptarshi, S., Duschl, A. and Lopata, A. 2013. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. Journal of Nanobiotechnology; 11(26): 1-12

Scientific committee on emerging and newly identified health risks (SCENIHR). 2006. The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. European Commission for Health and Consumer, Bruselas

Shah, V. and Belozerova, I. 2009. Influence of Metal Nanoparticles on the Soil Microbial Community and Germination of Lettuce Seeds. Water air pollunt. 197:143-148

Shang, W., Nuffer, J., Dordick, J. and Siegel, R. 2007. Unfolding of Ribonuclease A on Silica Nanoparticle Surfaces. Nano Letter; 7:1991-1995

Shanzhou, H., Peng, Liu. and Yu H. 2014. Aggregation of Gold Nanoparticles and DNA Damage by Atomic Force Microscopy, Journal of Wuhan University of Technology-Material Science Education; 29(1):180-184

Shi-Qiang, L., Hong, Z., Rong-Rong, Z., XiaoYu, S., Si-De, Y. and Shi-Long, W. 2008. Impact and mechanism of TiO2 nanoparticles on DNA synthesis in vitro. Science in China Series B: Chemistry; 51:367-372

Skebo, J., Grabinski, C., Schrand, A., Schlager, J. and Hussain, S. 2007. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. International Journal of Toxicology;26:135-141

Sohaebuddin, S., Thevenot, P., Baker, D., Eaton, J. and Tang, L. 2010. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Particle and Fibre Toxicology; 7: 22.

Somasundaran, P., Fang, X., Ponnurangam, S. and Li, B. 2010. Nanoparticles: Characteristics, mechanims and modulation of biotoxicity. KONA powder and particle journal; 28:38-49

Tomellini, R. and Hullmann, A. 2006. Nanotechnology - Innnovation for tomorrow's world. DirectorateGeneral for research, Nanoscience and nanotechnologies, Alemania, 2004

Turci, F., Ghibaudi, E., Colonna, M., Boscolo, B., Fenoglio, I. and Fubibi, B. 2010. An Integrated Approach to the Study of the Interaction between Proteins and Nanoparticles. Langmuir; 26:8336- 8346

Wang, T., Bai, J., Jiang, X. and Ulrich, G. 2012. Cellular Uptake of Nanoparticles by Membrane Penetration: A Study Combining Confocal Microscopy with FTIR Spectroelectrochemistry. ACS Nano; 6(2):1251-1259

Wen-Ru, L., Xiao-Bao, X., Qing-Shan, S., Hai-Yan, Z., You-Sheng, O-Y. and YiBe, C. 2010. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Applied Micobiology Biotechnology; (85):1115-1122

Worrall, J., Verma, A., Yan, H. and Rotello, V. 2006. “Cleaning” of nanoparticle inhibitors via proteolysis of adsorbed proteins. Chemical Communication; 2338-2340

Zhang, X., Niu, H., Yan, J. and Cai, Y. 2011. Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloids and Surface; 375:186- 192

Zuluaga, D., Sánchez, J., Aguilera, A. and Medina, J. 2007. Métodos de Fabricación de Nanotecnología. Informe de vigilancia tecnológica. Colciencias, Bogotá

Descargas

La descarga de datos todavía no está disponible.