Toxicidad de nanopartículas inorgánicas sobre los microorganismos del suelo con importancia agrícola. una revisión
Contenido principal del artículo
Autores
Sixta Palencia Enrique Combatt Caballero Manuel PalenciaResumen
El continuo avance de la nanotecnología así como sus aplicaciones en el mejoramiento de la agricultura son una realidad; sin embargo, la información que se posee del impacto de este tipo de tecnología sobre los sistemas biomoleculares es muy escasa. El objetivo del presente documento es construir, desde un punto de vista molecular, un panorama del estado actual de las investigaciones en torno al efecto de las nanopartículas metálicas sobre los microorganismos (MOs) y de este modo contribuir, desde una base teórica, al entendimiento de las posibles interacciones que tienen lugar entre estos materiales y los sistemas biomoleculares de los MOs cuando este tipo de sustancias son liberadas al medioambiente, en particular, en agroecosistemas direccionados a la producción de alimentos. Se concluye que la incertidumbre asociada al efecto de las nanopartículas metálicas (M-NPs) sobre los MOs sigue siendo muy grande, y que en consecuencia, mayores estudios deben ser realizados. En términos generales, las M-NPs pueden interaccionar con biomoléculas mediante diferentes mecanismos que pueden operar de forma simultánea, siendo amplio el espectro de variables que determinan su efecto.
Palabras clave:
Detalles del artículo
Referencias
An, H. and Jin, B. 2012. Prospects of nanoparticle–DNA binding and its implications in medical biotechnology, Biotechnology Advances; 30:1721-1732
Bang, S., Lee, T., Lee, S., Kim, P. and Kim, J. 2011. Toxicity assessment of titanium (IV) oxide nanoparticles using Daphnia magna (Water Flea), Environmental health and toxicology; 26:c2011002
Bardhan, M., Mandal, G. y Ganguly, T. 2009. Steady state, time resolved, and circular dichroism spectroscopic studies to reveal the nature of interactions of zinc oxide nanoparticles with transport protein bovine serum albumin and to monitor the possible protein conformational changes. Journal of Applied Physic; 106:034701
Barrere, R., D´Onofrio, M., Matas, L. y Marcotrigiao, G. 2011. La Nanotecnología en Iberoamérica, situación actual y tendencias. Observatorio Iberoamericano de Ciencia, Tecnología e Innovación del Centro de Altos Estudios Universitarios de la OEI
Basu, S., Jana, S., Pande, S. y Pal, T. 2008. Interaction of DNA bases with silver nanoparticles: Assembly quantified through SPRS and SERS. Journal of Colloid and Interface Science; 321:288- 293
Chatterjee, T., Chakraborti, S., Joshi, P., Singh, S., Gupta, V. y Chakrabarti P. 2010. The effect of zinc oxide nanoparticles on the structure of the periplasmic domain of the Vibrio cholerae ToxR protein. Febs Journal; 277:4184-4194
Cho, E., Zhang, Q. y Xia, Y. 2011. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nano; 6:385-391
Dawson, K., Salvati, A. y Lynch, I. 2009. Nanotoxicology: Nanoparticles reconstruct lipids. Nat Nano; 4:84-85
Devlin, T. 2004. BIOQUÍMICA: APLICACIONES CLÍNICAS. Cuarta edición. Reverte S. A. USA
Ezanka, P. Záruba, K. y Král V. 2011. Supramolecular chirality of cysteine modified silver nanoparticles. Colloids and surface A: Physicochemical and Engineering Aspects, 374:77-83
Fang, J., Shan, X., Wen, B., Lin, J. y Owens, G. 2009. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns, Environmental Pollution; 157:1101-1109
Frejo, M. T., Díaz, M. J., Lobo, M., García, J. y Capó, M. 2011. Nanotoxicología ambiental: retos actuales, Medicina Balear; 26: 36-46
Gondikas, A., Morris, A., Reinsch, B., Marinakos, S., Lowry, G. y HsuKim, H. 2012. Cysteine-Induced Modifications of Zero-valent Silver Nanomaterials: Implications for Particle Surface Chemistry, Aggregation, Dissolution, and Silver Speciation. Environmental Science & Techonology; 46(13):7037–7045
Gheshlaghi, Z., Riazi, G., Ahmadian, S., Ghafari, M. y Mahinpour, R. 2008. Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein. Acta Biochimical Biophysical Sin (Shangai); (40):777-782
Glibitskiy, G., Jelali, V., Semenov, M., Roshal, A., Glibitskiy, D. and Yu O. 2012. Interaction of DNA with silver nanoparticles. Ukranian Journal of Physic; 57( 7):695-699
Gojova, A., Guo, B., Kota, R., Rutledge, J., Kennedy, I. and Barakat, A. 2007. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: Effect of particle composition. Environmental Health Perspective; 115:403-409
Gutarowska, B., Skora, J., Zduniak, K. and Rembisz, D. 2012. Analysis of the sensitivity of microorganisms contaminating museums and archives to silver nanoparticles. Int. Biodeterior. Biodegrad; 68: 7-17
Handy, R., Von der Kammer, F., Lead, J., Hassellov, M., Owen, R. and Crane, M. 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology; 17: 287-314
Herzog, E., Byrne, H., Davoren, M., Casey, A., Duschl, A. and Oostingh, G. 2009. Dispersion medium modulates oxidative stress response of human lung epithelial cells upon exposure to carbon nanomaterial samples. Toxicology Applied Pharmacology; 236:276-281
Hullmann, A. 2006. The economic development of nanotechnology - An indicator based analysis, European Commission, Unit "Nano S&T - Convergent Science and Technologies, Alemania.
IUPAC.1995.Recommended terminology for the description of carbon as a solid. PAC, 1995, 67, 473. http://goldbook.iupac. org/G02684.html
Jiang, G., Shen, Z., Bao, Y., Chen, J. and He, T. 2011. Toxicological assessment of TiO2 nanoparticles by recombinant Escherichia coli bacteria. J. Environemtal monitoring; 13:42-28
Ju-Nam, Y. and Lead, R. 2008. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Science of the total environment; 396-414
Kopac, T., Bozgeyik, K. and Yener, J. 2008. Effect of pH and temperature on the adsorption of bovine serum albumin onto titanium dioxide. Colloids Surface A Physicochemical Engineering Aspects; 322:19-28
Lacerda, S.; Park, J., Meuse, C., Pristinski, D., Becker, M., Karim, A. and Douglas J. 2009. Interaction of Gold Nanoparticles with Common Human Blood Proteins. ACS Nano; 4:365-379
Levard, C., Matt, E., Lowry, G. and Brown, G. 2012. Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity. Environmetanl Science & Technology; 46: : 6900- 6914
Lin, J., Zhang, H., Chen, Z. and Zheng, Y. 2010. Penetration of Lipid Membranes by Gold Nanoparticles: Insights into Cellular Uptake, Cytotoxicity, and Their Relationship. ACS Nano; 4(9):5421-5429
Lundqvist, M., Sethson, I. and Jonsson, B. 2004. Protein Adsorption onto Silica Nanoparticles. Conformational Changes Depend on the Particles’ Curvature and the Protein Stability. Langmuir; 20:10639-10647
Mansoob, M., Kalathil, S., Lee, J. and Hwan, M. 2012. Synthesis of Cysteine Capped Silver Nanoparticles by Electrochemically Active Biofilm and their Antibacterial Activities. Bulletin Korean Chemical Society 22:2592-2596.
Maynard, A. and Warheit, M. 2011. The New Toxicology of Sophisticated Materials: Nanotoxicology and Beyond, Toxicological Sciences; 120: 109–129
Mohanraj V. and Chen Y. 2006. Nanoparticles- A review, Tropical Journal of Pharmaceutical Research; 59: 561-573
Molins, R. 2008. Oportunidades y amenazas de la nanotecnología para la salud, los alimentos, la agricultura y el ambiente, Comunica-Perspectivas, Innovación y Tecnología; 38-53.
Moore, M. 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?. Environment International; 32: 967-976
Mukherjee, S., Menegazzo, N., Brooksh, K., Dhurjati, P., Smorodin, V. y Nohe, A. 2012. Synthesis of L-Cysteine Stabilized Silver Nanoparticles and Their Effects on Cell Viability. Advanced Science Letters; 6:26-33
Nowacs, B. 2009. The behavoior and effects of nanoparticles in the environment. Environmental pollution; 1 (57):1063- 1064
Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W. and Cox C. 2004. Translocation of Inhaled Ultrafine Particles to the Brain. Inhalation Toxicology; 16:437-445
OMS y FAO. 2011. Informe Reunión conjunta FAO/OMS de expertos acerca de la aplicación de la nanotecnología en los sectores alimentario y agropecuario: posibles consecuencias para la inocuidad de los alimentos. Roma
Park, S., Lee, S., Lee, J., Sim, S., Gu, M., Yi J. and Lee, J. 2012. Toxic effects of titanium dioxide nanoparticles on microbial activity and metabolic flux, Biotechnology and bioprocess engineering; 17:276-282
Railsback, J., Singh, A., Pearce, R., McKnight, T., Collazo, R., Sitar, Z., Yingling, Y. and Melechko, A. 2012. Weakly Charged Cationic Nanoparticles Induce DNA Bending and Strand Separation. Advanced Materials; 24:4261-4265
Roiter, Y., Ornatska, M., Rammohan, A, Balakrishnan, J., Hein, D. and Minko, S. 2008. Interaction of Nanoparticles with Lipid Membrane. Nanoletters 8 (3) 941-944.
Sánchez, J., Guerrero, H., Marín, S., Tamayo, R. y Cosme, M. 2006. Nano: nanotecnología en España, Comunidad de Madrid
Santhosh, P., Penic, S., Genova, J., Iglic, A., Kralj-Iglic, V. and Ulrih, N. 2012. A study on the interaction of nanoparticles with lipid membranes and their influence on membrane fluidity. Journal of Physics. Conference series 2012; (398): 012034
Saptarshi, S., Duschl, A. and Lopata, A. 2013. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. Journal of Nanobiotechnology; 11(26): 1-12
Scientific committee on emerging and newly identified health risks (SCENIHR). 2006. The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. European Commission for Health and Consumer, Bruselas
Shah, V. and Belozerova, I. 2009. Influence of Metal Nanoparticles on the Soil Microbial Community and Germination of Lettuce Seeds. Water air pollunt. 197:143-148
Shang, W., Nuffer, J., Dordick, J. and Siegel, R. 2007. Unfolding of Ribonuclease A on Silica Nanoparticle Surfaces. Nano Letter; 7:1991-1995
Shanzhou, H., Peng, Liu. and Yu H. 2014. Aggregation of Gold Nanoparticles and DNA Damage by Atomic Force Microscopy, Journal of Wuhan University of Technology-Material Science Education; 29(1):180-184
Shi-Qiang, L., Hong, Z., Rong-Rong, Z., XiaoYu, S., Si-De, Y. and Shi-Long, W. 2008. Impact and mechanism of TiO2 nanoparticles on DNA synthesis in vitro. Science in China Series B: Chemistry; 51:367-372
Skebo, J., Grabinski, C., Schrand, A., Schlager, J. and Hussain, S. 2007. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. International Journal of Toxicology;26:135-141
Sohaebuddin, S., Thevenot, P., Baker, D., Eaton, J. and Tang, L. 2010. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Particle and Fibre Toxicology; 7: 22.
Somasundaran, P., Fang, X., Ponnurangam, S. and Li, B. 2010. Nanoparticles: Characteristics, mechanims and modulation of biotoxicity. KONA powder and particle journal; 28:38-49
Tomellini, R. and Hullmann, A. 2006. Nanotechnology - Innnovation for tomorrow's world. DirectorateGeneral for research, Nanoscience and nanotechnologies, Alemania, 2004
Turci, F., Ghibaudi, E., Colonna, M., Boscolo, B., Fenoglio, I. and Fubibi, B. 2010. An Integrated Approach to the Study of the Interaction between Proteins and Nanoparticles. Langmuir; 26:8336- 8346
Wang, T., Bai, J., Jiang, X. and Ulrich, G. 2012. Cellular Uptake of Nanoparticles by Membrane Penetration: A Study Combining Confocal Microscopy with FTIR Spectroelectrochemistry. ACS Nano; 6(2):1251-1259
Wen-Ru, L., Xiao-Bao, X., Qing-Shan, S., Hai-Yan, Z., You-Sheng, O-Y. and YiBe, C. 2010. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Applied Micobiology Biotechnology; (85):1115-1122
Worrall, J., Verma, A., Yan, H. and Rotello, V. 2006. “Cleaning” of nanoparticle inhibitors via proteolysis of adsorbed proteins. Chemical Communication; 2338-2340
Zhang, X., Niu, H., Yan, J. and Cai, Y. 2011. Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloids and Surface; 375:186- 192
Zuluaga, D., Sánchez, J., Aguilera, A. and Medina, J. 2007. Métodos de Fabricación de Nanotecnología. Informe de vigilancia tecnológica. Colciencias, Bogotá
Bang, S., Lee, T., Lee, S., Kim, P. and Kim, J. 2011. Toxicity assessment of titanium (IV) oxide nanoparticles using Daphnia magna (Water Flea), Environmental health and toxicology; 26:c2011002
Bardhan, M., Mandal, G. y Ganguly, T. 2009. Steady state, time resolved, and circular dichroism spectroscopic studies to reveal the nature of interactions of zinc oxide nanoparticles with transport protein bovine serum albumin and to monitor the possible protein conformational changes. Journal of Applied Physic; 106:034701
Barrere, R., D´Onofrio, M., Matas, L. y Marcotrigiao, G. 2011. La Nanotecnología en Iberoamérica, situación actual y tendencias. Observatorio Iberoamericano de Ciencia, Tecnología e Innovación del Centro de Altos Estudios Universitarios de la OEI
Basu, S., Jana, S., Pande, S. y Pal, T. 2008. Interaction of DNA bases with silver nanoparticles: Assembly quantified through SPRS and SERS. Journal of Colloid and Interface Science; 321:288- 293
Chatterjee, T., Chakraborti, S., Joshi, P., Singh, S., Gupta, V. y Chakrabarti P. 2010. The effect of zinc oxide nanoparticles on the structure of the periplasmic domain of the Vibrio cholerae ToxR protein. Febs Journal; 277:4184-4194
Cho, E., Zhang, Q. y Xia, Y. 2011. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nano; 6:385-391
Dawson, K., Salvati, A. y Lynch, I. 2009. Nanotoxicology: Nanoparticles reconstruct lipids. Nat Nano; 4:84-85
Devlin, T. 2004. BIOQUÍMICA: APLICACIONES CLÍNICAS. Cuarta edición. Reverte S. A. USA
Ezanka, P. Záruba, K. y Král V. 2011. Supramolecular chirality of cysteine modified silver nanoparticles. Colloids and surface A: Physicochemical and Engineering Aspects, 374:77-83
Fang, J., Shan, X., Wen, B., Lin, J. y Owens, G. 2009. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns, Environmental Pollution; 157:1101-1109
Frejo, M. T., Díaz, M. J., Lobo, M., García, J. y Capó, M. 2011. Nanotoxicología ambiental: retos actuales, Medicina Balear; 26: 36-46
Gondikas, A., Morris, A., Reinsch, B., Marinakos, S., Lowry, G. y HsuKim, H. 2012. Cysteine-Induced Modifications of Zero-valent Silver Nanomaterials: Implications for Particle Surface Chemistry, Aggregation, Dissolution, and Silver Speciation. Environmental Science & Techonology; 46(13):7037–7045
Gheshlaghi, Z., Riazi, G., Ahmadian, S., Ghafari, M. y Mahinpour, R. 2008. Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein. Acta Biochimical Biophysical Sin (Shangai); (40):777-782
Glibitskiy, G., Jelali, V., Semenov, M., Roshal, A., Glibitskiy, D. and Yu O. 2012. Interaction of DNA with silver nanoparticles. Ukranian Journal of Physic; 57( 7):695-699
Gojova, A., Guo, B., Kota, R., Rutledge, J., Kennedy, I. and Barakat, A. 2007. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: Effect of particle composition. Environmental Health Perspective; 115:403-409
Gutarowska, B., Skora, J., Zduniak, K. and Rembisz, D. 2012. Analysis of the sensitivity of microorganisms contaminating museums and archives to silver nanoparticles. Int. Biodeterior. Biodegrad; 68: 7-17
Handy, R., Von der Kammer, F., Lead, J., Hassellov, M., Owen, R. and Crane, M. 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology; 17: 287-314
Herzog, E., Byrne, H., Davoren, M., Casey, A., Duschl, A. and Oostingh, G. 2009. Dispersion medium modulates oxidative stress response of human lung epithelial cells upon exposure to carbon nanomaterial samples. Toxicology Applied Pharmacology; 236:276-281
Hullmann, A. 2006. The economic development of nanotechnology - An indicator based analysis, European Commission, Unit "Nano S&T - Convergent Science and Technologies, Alemania.
IUPAC.1995.Recommended terminology for the description of carbon as a solid. PAC, 1995, 67, 473. http://goldbook.iupac. org/G02684.html
Jiang, G., Shen, Z., Bao, Y., Chen, J. and He, T. 2011. Toxicological assessment of TiO2 nanoparticles by recombinant Escherichia coli bacteria. J. Environemtal monitoring; 13:42-28
Ju-Nam, Y. and Lead, R. 2008. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Science of the total environment; 396-414
Kopac, T., Bozgeyik, K. and Yener, J. 2008. Effect of pH and temperature on the adsorption of bovine serum albumin onto titanium dioxide. Colloids Surface A Physicochemical Engineering Aspects; 322:19-28
Lacerda, S.; Park, J., Meuse, C., Pristinski, D., Becker, M., Karim, A. and Douglas J. 2009. Interaction of Gold Nanoparticles with Common Human Blood Proteins. ACS Nano; 4:365-379
Levard, C., Matt, E., Lowry, G. and Brown, G. 2012. Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity. Environmetanl Science & Technology; 46: : 6900- 6914
Lin, J., Zhang, H., Chen, Z. and Zheng, Y. 2010. Penetration of Lipid Membranes by Gold Nanoparticles: Insights into Cellular Uptake, Cytotoxicity, and Their Relationship. ACS Nano; 4(9):5421-5429
Lundqvist, M., Sethson, I. and Jonsson, B. 2004. Protein Adsorption onto Silica Nanoparticles. Conformational Changes Depend on the Particles’ Curvature and the Protein Stability. Langmuir; 20:10639-10647
Mansoob, M., Kalathil, S., Lee, J. and Hwan, M. 2012. Synthesis of Cysteine Capped Silver Nanoparticles by Electrochemically Active Biofilm and their Antibacterial Activities. Bulletin Korean Chemical Society 22:2592-2596.
Maynard, A. and Warheit, M. 2011. The New Toxicology of Sophisticated Materials: Nanotoxicology and Beyond, Toxicological Sciences; 120: 109–129
Mohanraj V. and Chen Y. 2006. Nanoparticles- A review, Tropical Journal of Pharmaceutical Research; 59: 561-573
Molins, R. 2008. Oportunidades y amenazas de la nanotecnología para la salud, los alimentos, la agricultura y el ambiente, Comunica-Perspectivas, Innovación y Tecnología; 38-53.
Moore, M. 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?. Environment International; 32: 967-976
Mukherjee, S., Menegazzo, N., Brooksh, K., Dhurjati, P., Smorodin, V. y Nohe, A. 2012. Synthesis of L-Cysteine Stabilized Silver Nanoparticles and Their Effects on Cell Viability. Advanced Science Letters; 6:26-33
Nowacs, B. 2009. The behavoior and effects of nanoparticles in the environment. Environmental pollution; 1 (57):1063- 1064
Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W. and Cox C. 2004. Translocation of Inhaled Ultrafine Particles to the Brain. Inhalation Toxicology; 16:437-445
OMS y FAO. 2011. Informe Reunión conjunta FAO/OMS de expertos acerca de la aplicación de la nanotecnología en los sectores alimentario y agropecuario: posibles consecuencias para la inocuidad de los alimentos. Roma
Park, S., Lee, S., Lee, J., Sim, S., Gu, M., Yi J. and Lee, J. 2012. Toxic effects of titanium dioxide nanoparticles on microbial activity and metabolic flux, Biotechnology and bioprocess engineering; 17:276-282
Railsback, J., Singh, A., Pearce, R., McKnight, T., Collazo, R., Sitar, Z., Yingling, Y. and Melechko, A. 2012. Weakly Charged Cationic Nanoparticles Induce DNA Bending and Strand Separation. Advanced Materials; 24:4261-4265
Roiter, Y., Ornatska, M., Rammohan, A, Balakrishnan, J., Hein, D. and Minko, S. 2008. Interaction of Nanoparticles with Lipid Membrane. Nanoletters 8 (3) 941-944.
Sánchez, J., Guerrero, H., Marín, S., Tamayo, R. y Cosme, M. 2006. Nano: nanotecnología en España, Comunidad de Madrid
Santhosh, P., Penic, S., Genova, J., Iglic, A., Kralj-Iglic, V. and Ulrih, N. 2012. A study on the interaction of nanoparticles with lipid membranes and their influence on membrane fluidity. Journal of Physics. Conference series 2012; (398): 012034
Saptarshi, S., Duschl, A. and Lopata, A. 2013. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. Journal of Nanobiotechnology; 11(26): 1-12
Scientific committee on emerging and newly identified health risks (SCENIHR). 2006. The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. European Commission for Health and Consumer, Bruselas
Shah, V. and Belozerova, I. 2009. Influence of Metal Nanoparticles on the Soil Microbial Community and Germination of Lettuce Seeds. Water air pollunt. 197:143-148
Shang, W., Nuffer, J., Dordick, J. and Siegel, R. 2007. Unfolding of Ribonuclease A on Silica Nanoparticle Surfaces. Nano Letter; 7:1991-1995
Shanzhou, H., Peng, Liu. and Yu H. 2014. Aggregation of Gold Nanoparticles and DNA Damage by Atomic Force Microscopy, Journal of Wuhan University of Technology-Material Science Education; 29(1):180-184
Shi-Qiang, L., Hong, Z., Rong-Rong, Z., XiaoYu, S., Si-De, Y. and Shi-Long, W. 2008. Impact and mechanism of TiO2 nanoparticles on DNA synthesis in vitro. Science in China Series B: Chemistry; 51:367-372
Skebo, J., Grabinski, C., Schrand, A., Schlager, J. and Hussain, S. 2007. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. International Journal of Toxicology;26:135-141
Sohaebuddin, S., Thevenot, P., Baker, D., Eaton, J. and Tang, L. 2010. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Particle and Fibre Toxicology; 7: 22.
Somasundaran, P., Fang, X., Ponnurangam, S. and Li, B. 2010. Nanoparticles: Characteristics, mechanims and modulation of biotoxicity. KONA powder and particle journal; 28:38-49
Tomellini, R. and Hullmann, A. 2006. Nanotechnology - Innnovation for tomorrow's world. DirectorateGeneral for research, Nanoscience and nanotechnologies, Alemania, 2004
Turci, F., Ghibaudi, E., Colonna, M., Boscolo, B., Fenoglio, I. and Fubibi, B. 2010. An Integrated Approach to the Study of the Interaction between Proteins and Nanoparticles. Langmuir; 26:8336- 8346
Wang, T., Bai, J., Jiang, X. and Ulrich, G. 2012. Cellular Uptake of Nanoparticles by Membrane Penetration: A Study Combining Confocal Microscopy with FTIR Spectroelectrochemistry. ACS Nano; 6(2):1251-1259
Wen-Ru, L., Xiao-Bao, X., Qing-Shan, S., Hai-Yan, Z., You-Sheng, O-Y. and YiBe, C. 2010. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Applied Micobiology Biotechnology; (85):1115-1122
Worrall, J., Verma, A., Yan, H. and Rotello, V. 2006. “Cleaning” of nanoparticle inhibitors via proteolysis of adsorbed proteins. Chemical Communication; 2338-2340
Zhang, X., Niu, H., Yan, J. and Cai, Y. 2011. Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloids and Surface; 375:186- 192
Zuluaga, D., Sánchez, J., Aguilera, A. and Medina, J. 2007. Métodos de Fabricación de Nanotecnología. Informe de vigilancia tecnológica. Colciencias, Bogotá
Descargas
La descarga de datos todavía no está disponible.