Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Formación in vitro de rizomas en caña flecha (Gynerium sagitatum Aubl.) y recuperación de plantas

Arrow cane (Gynerium sagitatum Aubl.) in vitro rhizome formation and plantlet recovery



Cómo citar
Suarez Padron, I. E., Ortiz Lopez, O., & López Diaz, C. M. (2017). Formación in vitro de rizomas en caña flecha (Gynerium sagitatum Aubl.) y recuperación de plantas. Temas Agrarios, 22(1), 9-18. https://doi.org/10.21897/rta.v22i1.911

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Isidro Elias Suarez Padron
Orlis Ortiz Lopez
Claudia Marcela López Diaz

La caña flecha Gynerium sagitatum Aubl. (Poaceae) es una especie de gran importancia ambiental, cultural y económica para ciertas comunidades indígenas del Norte de Colombia, empleando su fibra en la fabricación apreciables artesanías. La cosecha de la planta y la no reposición de esta, viene contribuyendo en la disminución de poblaciones naturales de la esta especie. La micropropagación ha emergido como una de las la única posibilidades de producir de forma eficiente material vegetal para el establecimiento de cultivos y restaurar zonas afectadas. Con el fin de mejorar la eficiencia económica del protocolo de micropropagación, estructuras del tipo rizomas fueron inducidas in vitro a partir de explantes consistentes de plantas stablecidas in vitro bajo tres niveles de sacarosa, cuatro de benzilaminopurina – BAP y cuatro de ácido abscísico – ABA en MS con (en mg L-1) myo-inositol (100), tiamine HCL (0,4) y solidificados con Phytagel® (3.000). Los tratamientos (48) fueron distribuidos con un diseño completamente al azar con seis repeticiones por tratamiento. Los cultivos fueron mantenidos durante ocho semanas a 25 °C con 12 h de fotoperíodo (40 μmol fotones m-2 s-1) suministrada con lámparas de luz fría fluorescente. Diferencias estadísticas se observaron con respecto al número de rizomas formados y longitud de los rizomas como efecto de la interacción de los tres factores. La recuperación de las plantas ex vitro ocurrió en mayor número (6,0) cuando los rizomas se desarrollaron en medios suplidos con 263000 µM de sacarosa combinado con 4,44 y 8,88 µM de Benzilaminopurina – BAP. Los resultados evidencian la posibilidad de inducir in vitro rizomes de caña flecha para ser utilizados en conservación y propagación de esta especie.


Visitas del artículo 1301 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Abelenda, J., Navarro, C. and Prat, S. 2011. From the model to the crop: genes controlling tuber formation in potato. Current Opinion in Biotechnology 22 (2):287-292.
  2. Antoniadi, I., Plackova. L., Simonovik. B., Dolezal. K., Turnbull. C., Ljung. K. and Novak, O. 2015. Cell-type-specific cytokinin distribution within the Arabidopsis primary root apex. Plant Cell 27(7):1967.
  3. Aramendiz, H., Espitia, M. and Robles, J. 2005. Colección, Colección, conservación, caracterización morfoagronómica y producción de semilla de caña flecha (Gynerium sagittatum Aubl.) del Caribe Colombiano. Informe final, Universidad de Córdoba, Facultad de Ciencias Agrícolas, Programa de Ingeniería Agronómica, Montería, 52-54, p. 118.
  4. Badr, A., Angers, P. and Desjardins, Y. 2015. Comprehensive analysis of in vitro to ex vitro transition of tissue cultured potato plantlets grown with or without sucrose using metabolic profiling technique. Plant Cell Tissue and Organ Culture 122(2): 491-508.
  5. Benavides, A., Bassarello, C., Montoro, P., Villegas, W., Piacente, S. and Pizza, C. 2007. Flavonoids and isoflavonoids from Gynerium sagittatum. Phytochemistry 68(9):1277-1284.
  6. Bielach, A., Duclercq, J., Marhavy, P. and Benkova, E. 2012. Genetic approach towards the identification of auxin-cytokinin crosstalk components involved in root development. Philosophical transactions of the Royal Society of London. Serie B. Biological sciences 367(1595):1469-1478.
  7. Bielach, A., Podlesakova, K., Marhavi, P., Duclercq, J., Cuesta, C., Muller, B., Grunewald, W., Tarkowsky, P. and Benkova, E. 2012. Spatiotemporal regulation of lateral root organogenesis in Arabidopsis by cytokinin. Plant Cell 24(10):3967-3981.
  8. Chan, L., Ramireddy, E. and Schmulling, T. 2013. Lateral root formation and growth of Arabidopsis is redundantly regulated by cytokinin metabolism and signaling genes. Journal of Experimental Botany 64(16):5021-5032.
  9. Cheng, L., Li, S., Yin, J., Li, L. and Chen, X. 2013. Genome-Wide analysis of differentially expressed genes relevant to rhizome formation in lotus root (Nelumbo nucifera Gaertn). PLos ONE. 8(6)1]: e67116. doi: 10.1371/journal.pone.0067116 [25 de September de 2015]
  10. Clayton, W., Vorontsova, M., Hartman, K. and Williamson, H. 2015. GrassBase - The Online World Grass Flora. http://www.kew.org/data/grasses-db.html. [10 September 2015].
  11. Dai, Z., Meddar, M., Renaud, C., Merlin, I., Hilbert, G., Delrot, S. and Gomès, E. 2014. Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation. Journal of Experimental Botany 65(16):4665-4677.
  12. El-Hawaz, R., Bridges, W. and Adelberg, J. 2015. In vitro growth of Curcuma longa L. in response to five mineral elements and plant density in fed-batch culture systems. PloS One 10(4), http://dx.doi.org/10.1371/journal.pone.0118912 [25 septiembre 2015].
  13. Fernie, A. And Willmitzer, L. 2001. Molecular and biochemical triggers of potato tuber development. Plant Physiology 27(4):1459-465.
  14. Fischer, L., Lipavska, H., Hausman, J. and Opatrny, Z. 2008. Morphological and molecular characterization of a spontaneously tuberizing potato mutant: an insight into the regulatory mechanisms of tuber induction. Bio Med Central Plant Biology 8(1):117. DOI:10.1186/1471- 2229-8-117
  15. Guo, L., Yu, L., Fan, Y., Lu, Neng., Yin, M., Zhang, F. and Yang, Q. 2010. Cloning and characterization of a potato TFL1 gene involved in tuberization regulation. Plant Cell Tissue and Organ Culture103(1):103-109.
  16. Hu, Y., Li, Y., Zhang, J., Liu, H., Tian, M. and Huang, Y. 2012. Binding of ABI4 to a CACCG motif mediates the ABA-induced expression of the ZmSSI gene in maize (Zea mays L.) endospem. Journal of Experimental Botany 63(16):5979-5989.
  17. Huang, W., Hu, H. and Zhang, Shi-Bao. 2015. Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight. Frontiers in Plant Science. 6: 1-9. DOI: 10.3389/fpls.2015.00621.
  18. Jang, C., Kamps, T., Tang, H., Bowers, J., Lemke, C. and Paterson, A. 2009. Evolutionary fate of rhizome-specific genes in a non-rhizomatous Sorghum genotype. Heredity 102(3):266-273.
  19. Kim, C., Lee, Tae-Ho., Guo, H., Chung, J., Paterson, A., Kim, D. and Lee, G. 2014. Sequencing of transcriptomes from two Miscanthus species reveals functional specificity in rhizomes, and clarifies evolutionary relationships. Bio Med Central Plant Biology. 14:1-10. DOI: 10.1186/1471-2229-14-134.
  20. Kuipers, A., Jacobsen, E., Visser, R. 1994. Formation and deposition of amylose in the potato-tuber starch granule are affected by the reduction of granule-bound starch synthase gene-expression. The Plant cell 6(1):43-52.
  21. Kuipers, A., Jacobsen, E., Visser, R. 1994. Formation and deposition of amylose in the potato-tuber starch granule are affected by the reduction of granule-bound starch synthase gene-expression. The Plant cell 6(1):43-52.
  22. Kumar, P., Selvarajan, R., Iskra-Caruana, M., Chabannes, M. and Hanna, R. 2015. Biology, etiology and control of virus diseases of banana and plantain. Advanced Virus Research 91: 229-269.
  23. Lema-Ruminska, J., Goncerzewicz, K. and Gabriel, M. 2013. Influence of Abscisic Acid and Sucrose on Somatic Embryogenesis in Cactus Copiapoa tenuissima Ritt. Forma mostruosa. The Scientific World Journal, ID513985. DOI 10.1155/2013/513985. http://dx.doi.org/10.1155/2013/513985 [25 septiembre 2015]
  24. Li, X., Wang, J., Lin, J., Wang, Y. and Mu, C. 2014. Rhizomes help the forage grass Leymus chinensis to adapt to the Salt and Alkali Stresses.The ScientificWorld Journal. ID213401.15. http://dx.doi.org/10.1155/2014/213401 [25 septiembre 2015]
  25. López, C. 2013. Efecto del recipiente y medio de cultivo sobre la multiplicación in vitro de caña flecha (Gynerium sagitatum Aubl.). Tesis Licenciado en Ciencias Naturales y Medio Ambiente, Universidad de Córdoba, Montería.
  26. Madera-Parra, C., Peña, M., Peña, E. and Lens, P. 2015. Cr(VI) and COD removal from landfill leachate by polyculture constructed wetland at a pilot scale. Environmental science and pollution research international 22(17):12804-12815.
  27. Madera-Parra, C., Peña-Salamanca, E., Peña, M., Rousseau, D. and Lens, P. 2015. Phytoremediation of Landfill Leachate with Colocasia esculenta, Gynerium sagittatum and Heliconia psittacorum in Constructed Wetlands. International Journal of Phytoremediation 17(1):16-24.
  28. Mollo, L., Martins, M., Oliveira, V., Nievola, C., Figueiredo-Ribeiro, R. 2011. Effects of low temperature on growth and non-structural carbohydrates of the imperial bromeliad Alcantarea imperialis cultured in vitro. Plant Cell Tissue and Organ Culture 107:141-149. DOI 10.1007/s11240-011-9966-y
  29. Muñiz-García, M., Stritzler, M. and Capiati, D. 2014. Heterologous expression of Arabidopsis ABF4 gene in potato enhances tuberization through ABA-GA crosstalk regulation. Planta 239(3):615-631.
  30. Murashige, T and Skoog, F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiologia Plantarum 15:473-497.
  31. Ncube, B., Finnie, J. and Van, J. 2014. Carbon-nitrogen ratio and in vitro assimilate partitioning patterns in Cyrtanthus guthrieae L. Plant Physiology and Biochemistry 74:246-254.
  32. Ogawa, A., Audo, F., Toyofuku, K. and Kawashima, C. 2009. Sucrose Metabolism for the Development of Seminal Root in Maize Seedlings. Plant Production Science 12(1): 9-16.
  33. Olivier, K., Honan, K., Anike, F., Agbo, G. and Dodo, H. 2012. In vitro induction of minitubers in yam (Dioscorea cayenensis D. rotundata complex). Plant Cell Tissue and Organ Culture 109(1):179-189.
  34. Ortega-Ortega, R., Beltrán-Herrera, J. and Marrugo-Negrete, J. 2011. Acumulación de mercurio (Hg) por caña flecha. Revista Colombiana Biotecnología 13(1): 33-41.
  35. Ortega-Ortega, R., Beltrán-Herrera, J. and Marrugo-Negrete, J. 2011. Acumulación de mercurio (Hg) por caña flecha. Revista Colombiana Biotecnología 13(1):33-41.
  36. Pastrana, I. y Suárez, I. 2009. Producción de plantas de caña flecha (Gynerium sagittatum) ‘Criolla’ a través de micropropagación. Revista Temas Agrarios 14(2):2-18.
  37. Pati, P., Rath, S., Sharma, M., Sood, A. and Ahuja, P. 2006. In vitro propagation ofrose - a review. Biotechnology Advances 24(1):94-11.
  38. Rayirath, U., Lada, R., Caldwell, C., Asiedu, S. and Sibley, K. 2011. Role of ethylene and jasmonic acid on rhizome induction and growth in rhubarb (Rheum rhabarbarum L.). Plant Cell Tissue and Organ Culture 105(2): 253-263.
  39. Rook, F., Hadingham, S., Li, Y. Bevan, M. 2006. Sugar and ABA response pathways and the control of gene expression. Plant, Cell and Environment 29:426-434.
  40. Sharma, P., Pandey, A., Bhattacharya, A., Nagar, P and Ahuja, P. 2004. ABA associated biochemical changes during somatic embryo development in Camellia sinensis (L.) O. Kuntze. Plant Physiology 161(11):1269-1276.
  41. Shin, J., Kim, K., Kang, H., Zulfugarov, I., Bae, G., Lee, CH., Lee, D. and Choi, G. 2009. Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome interacting factors. Proceedings of National Academy of Sciences USA. 106(18):7660-7665.
  42. Suárez, I., Aramendiz, H. Pastrana, I. 2009. Micropropagación de Caña Flecha (Gy¬nerium sagittatum Aubl.), Revista Facul¬tad Nacional de Agronomía 62(2):5135-5143.
  43. Tetlow, I., Morell, M. and Emes, M. 2004. Recent developments in understanding the regulation of starch metabolism in higher plants. Journal of experimental botany 55(406):2131-2145.
  44. Tjaden, J., Mohlmann, T., Kampfenkel, K., Henrichs, G, Neuhaus, H. 1998. Altered plastidic ATP/ADP-transporter activity influences potato (Solanum tuberosum L.) tuber morphology, yield and composition of tuber starch. The Plant Journal 16(5):531-540.
  45. Wang, Z., Shen, J., Ludewing, U. and Neumann, G. 2015. A re-assessment of sucrosesignaling involved in cluster-root formation and function in phosphate-deficient white lupin (Lupinus albus). Physiologia plantarum 154 (3):407-419.
  46. Yamori, W., Evans, J., Von Caemmerer S. 2010. Effects of growth and measurement light intensities on temperature dependence of CO2 assimilation rate in tobacco leaves. Plant Cell & Environment 33 (3): 332-343.
  47. Yamori, W., Shikanai, T. and Makino, A. 2015. Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light. Scientific Reports11(5):13908.
  48. Yang, M., Zhu, L., Pan, C., Xu, L., Liu, Y., Ke, W. and Yang, P. 2015. Transcriptomic Analysis of the Regulation of Rhizome Formation in Temperate and Tropical Lotus (Nelumbo nucifera). Scientific Reports 5:13059. http://www.nature.com/articles/srep13059 DOi: 10.1038/srep13059. [10 septiembre 2015].

Sistema OJS 3.4.0.3 - Metabiblioteca |