Skip to main navigation menu Skip to main content Skip to site footer

Physiology behavior of grasses under three moisture levels in screenhouse

Comportamiento fisiológico de gramíneas forrajeras bajo tres niveles de humedad en condiciones de casa malla



How to Cite
Atencio, L. M., tapia, J. J., Mejía, S., & Cadena Torres, J. (2014). Physiology behavior of grasses under three moisture levels in screenhouse. Sour Topics, 19(2), 244-258. https://doi.org/10.21897/rta.v19i2.1194

Dimensions
PlumX
Liliana Maria Atencio
José Jaime tapia
Sergio Mejía
Jorge Cadena Torres

The present study aimed to evaluate the effect of moisture level on the physiological behavior of different forage grasses. The experiment was conducted in screenhouse at the Center for Research Turipaná of Corpoica, (Cereté, Córdoba). Was used a design randomized complete block with 14 genotypes, and three (3) replications. Three moisture regimes were used in the manner of locations within the same screenhouse. Among the variables studied were: net photosynthesis, transpiration, stomatal conductance, leaf water potential, leaf dry mass, leaf area, among others. Only the variables leaf area and leaf water potential showed significant interactions between genotype and environment of moisture, while the other variables, were most affected by the main factors(p<0.05). Genotypes Bisset, Strikcland and Colosuana had an interaction for leaf area, showing the highest value at high and medium moisture. At low humidity, the 14 forage grasses had more negative leaf water potential. Low level moisture had the lowest values of stomatal conductance and transpiration and lower dry matter accumulation in all organs, mainly the leaves. BR02/1752 had the highest dry matter accumulation in leaves (32.67 gplant-1) followed by CIAT16051 (27.78 gplant-1). It is concluded that the physiological behavior of pastures is determined by genetic characteristics and moisture regime, not by their interaction.> <0.05). Genotypes Bisset, Strikcland and Colosuana had an interaction for leaf area, showing the highest value at high and medium moisture. At low humidity, the 14 forage grasses had more negative leaf water potential. Low level moisture had the lowest values of stomatal conductance and transpiration and lower dry matter accumulation in all organs, mainly the leaves. BR02/1752 had the highest dry matter accumulation in leaves (32.67 gplant-1) followed by CIAT16051 (27.78 gplant-1). It is concluded that the physiological behavior of pastures is determined by genetic characteristics and moisture regime, not by their interaction


Article visits 1781 | PDF visits


Downloads

Download data is not yet available.
  1. Azam, S. and Squire, G. 2007. Principles of Tropical Agronomy. CABI Publishing.
  2. Araya, M. y Boschini, C. 2005. Producción de forraje y calidad nutricional de variedades de Pennisetum purpureum en la meseta central de Costa Rica. Agronomía Mesoamericana. 16(1): 37-43.
  3. Baeza, S. 2002. Área específica foliar como variable de respuesta al pastoreo en gramíneas dominantes de una pradera natural. Facultad de Ciencias, Universidad de la República. 17p.
  4. Bahrami, H., Jafar, M., and Kamgar, A. 2010. Effect of water stress on ten forage grasses native or introduced to Iran. Japanese Society of Grassland Science. pp: 2
  5. Balaguera, H., Álvarez, J. y Rodríguez, J. 2008. Efecto del déficit de agua en el trasplante de plántulas de tomate (Solanum lycopersicum L.). Agronomía Colombiana 26(2): 246-255.
  6. Barroso, L. 2000. Comportamiento de las relaciones hídricas en la albahaca blanca (Ocimum basilicum L.) al ser irrigadas con diferentes volúmenes de agua. CultivosTropicales 21(3):57-59
  7. Blum, A. 2011. Plant Stress and Plant Production. In: Plant Breeding for Water-Limited Environments, Hardcover. p11-52.
  8. Earl, H. 2003. A precise gravimetric method for simulating drought stress in pot experiments. Crop Science 43(5):1868-1873.
  9. García, S. 2012. Efecto del estrés hídrico sobre el crecimiento y habilidad competitiva de Lolium perenne L. y Bromus valdivianus Phill. Tesis de pregrado. Universidad Austral de Chile. Valdivia – Chile. 49p
  10. Garnier B. and Laurent G. 1994. Leaf anatomy, specific mass and water content in congeneric annual and perennial grass species. New Phytol, 128. p725-736.
  11. Guenni, O., Marín, D. and Baruch, Z. 2002. Responses to drought of five Brachiaria species. I. Biomass production, leaf growth, root distribution, water use and forage quality. Facultad de Agronomía. Plant and soil 243: 229-241.
  12. Guenni, O., Baruch, Z. and Marín, D. 2002. Responses to drought of five Brachiaria species. II. Water relations and leaf gas exchange. Facultad de Agronomía. Plant and soil 243: 229-241.
  13. Gurovich, L. 2000. Riego Superficial Tecnificado. Tercera Edición ampliada. Colección Textos Universitarios Pontificia Universidad Católica de Chile. 635 p. ISBN 956-14-0476-1
  14. Hartung, W. 1996. Trockenheit. En: Brunold,CH.; Rüegesegger, A.; Brändle, R. edit.Stress bei Pflanzen. UTB für Wissenschaft,Verlag Paul Haupt. Stuttgart. p199-132.
  15. Herralde, F. 2000. Estudio integral de las respuestas ecofisiológicas al estrés hídrico: caracterización de variedades de almendro. Tesis doctoral. Universidad de Barcelona.
  16. Hoyos, V. 2007. Evaluación y selección de genotipos de Brachiaria spp. por su tolerancia al estrés por sequía y toxicidad por aluminio. Tesis Ingeniero Agrónomo. Universidad de Caldas. Manizales.
  17. Jarma, A., Maza, L., Pineda, A. y Hernandez, J. 2012. Aspectos fisiológicos y bromatológicos de Brachiaria humidicola. Ces. Med. Vet. Zootec
  18. Khan, H., Link, W., Hocking, T., y Stoddard, F. 2007. Evaluation of physiological traits for Características morfo-fisiológicas de frijol común (Phaseolus vulgaris L.) relacionadas con la adaptación a sequía 206 improving drought tolerance in faba bean (Vicia faba L.). Plant Soil. 292:205-217.
  19. Mattos, J., Gomide, J., Martinez, C. y Huaman. 2005. Crescimento de Espécies do Gênero Brachiaria, sob Déficit Hídrico, em Casa de Vegetação R. Bras. Zootec.34(3):746-754
  20. Mattos, J., Gomide, J. y Martinez, C. 2005. Crescimento de espécies de Brachiaria sob déficit hídrico e alagamento a campo. R. Bras. Zootec.34(3):755-764
  21. Montenegro, G. y Malagón, D. 1990. Propiedades físicas de los suelos Instituto Geográfico Agustín Codazzi. Bogotá. Colombia.
  22. Ontiveros, A., Kohashi, J., Yáñez, P., Acosta, J. y Martínez, A. 2005. Crecimiento de la raíz del frijol con diferentes velocidades de secado del suelo. Terra Latinoamericana 23(3): 311-320.
  23. Passioura, J. 2002. Soil conditions and plant growth. Plant, Cell and Environment. 25(2):311-318.
  24. Reyes, A., Bolaños, E., Hernández, D., Aranda, E. e Izquierdo, F. 2009. Producción de materia seca y concentración de proteína en 21 genotipos del pasto humidícola Brachiaria humidícola (Rendle) Schweick. Universidad y ciencia, 25(3):213-224.
  25. Rodríguez, A., Cavallini, M. e Cabral, N. 2009.Estresse por Déficit Hídrico em Plantas Forrageiras. Embrapa Caprinos e Ovinos, Brasil. 50 p.
  26. Santos, P., Cruz, P., Araujo, L., Pezzopane, J., Valle, C. and Pezzopane, C. 2013. Response mechanisms of Brachiaria brizantha cultivars to water deficit stress. Revista Brasileira de Zootecnia, 42(11), 767-773.
  27. Scholander, P., Hammel, H. and Bradstreer, Hemmings. 1965. Sap pressure in vascular plants. Science148: 339–346.
  28. Vila, H. 2011. Regulación de la hidratación y la turgencia foliares por mecanismos evitadores del estrés, y resistencia a déficit hídrico en vid Modelo vs. experimentos. Tesis de doctorado. Universidad Nacional de Cuyo, Mendoza.

Sistema OJS 3.4.0.3 - Metabiblioteca |