Skip to main navigation menu Skip to main content Skip to site footer

Effect of the addition of polielectrolyte on aqueous phase of acid sulfate soils

Adición de polielectrolitos sobre la fase acuosa de un suelo sulfatado ácido interior de cordoba, colombia



How to Cite
Mercado, J., Combatt Caballero, E. M., & Palencia, M. (2016). Effect of the addition of polielectrolyte on aqueous phase of acid sulfate soils. Sour Topics, 20(1), 60-70. https://doi.org/10.21897/rta.v20i1.748

Dimensions
PlumX
Jaime Mercado
Enrique Miguel Combatt Caballero
Manuel Palencia

The use of polymers in soils have been mainly focused in the increasing of water storage capacity and efficient water using, increasing of infiltration rate, reduction of irrigation frequency, erosion control, decreasing of lost by runoff and increase its usefulness for planting crops. The aim of this work was to determine the effect of polyelectrolyte (PEL) addition on chemical composition of soil aqueous phase of acid sulfate soils (ASS). For that, different soil samples were collected and incubated with aqueous polymer solutions: poly(acrilic acid) (PAA), poly(vinyl pyrrolidone) (PVP) and poly(sodium styrenesulfonate) (PSSNa). Effect of PEL was seen to be strongly dependent on chemical nature of functional groups on polymer chains. In the case of PSSNa and PAA, effect of polymer concentration was characterized by the immobilization of ions; whereas for PVP a solubilization effect was observed. Results indicate that interaction between chemical species from aqueous phase and polymer functional groups is an important factor that should be considered. In addition, effect of polymers is influenced by pH and organic matter contents.

 


Article visits 1010 | PDF visits


Downloads

Download data is not yet available.
  1. Bai, M., Wilske, B., Buegger, F., Esperschuttz, J., Bach, M., Frede, H.G., and Breuer, L.2015. Relevance of nonfunctional linear polyacrylic acid for the biodegradation of superabsorbent polymer in soils. Environmental Science Pollution Resourse International 22(7):5444-5452.
  2. Burton, E., Bush, R.T., Sullivan, L., Johnston, S., and Hocking, R. 2008. Mobility of arsenic and selected metals during refloding of iron- and organic-rich acidsulfate soil, Chemical Geology, 253:64-73.
  3. Callebaut, F., Gabriels, D., and De Boodt, M. 1979. The effect of polymer structure on soil physico-chemical properties and soil water evaporation, Journal of Chemistry, Technology and Biotechnology 29:723-729.
  4. Combatt, E., Martínez, Z., Cabrales, E., Martínez, G., Castillo, C. and Palencia, M. 2004. Caracterización fiicoquímica y mineralógica de los suelos sulfatados ácidos en el transecto San Carlos-CotorraCarrillo. Universidad de Córdoba.
  5. Combatt, E., Martinez, Z., and Palencia, M. 2008. Generación de acidez por oxidación de pirita en suelos sulfatados ácidos interiores de clima cálido, Temas agrarios, 13:32-39.
  6. Dorraji, S.S., Golchin, A., and Ahmadi, S. 2010. The effects of hydrophilic polymer and soil salinity on corn growth in sandy and loamy soils clean, Soil, Air, Water, 38: 584-591.
  7. Guiwei, Q., De Varennes, A., and CunhaQueda, C. 2008. Remediation of a mine soil with insoluble polyacrylate polymers enhances soil quality and plant growth. Soil Use and Management, 24:350-356.
  8. Instituto Geográfio Agustin Codazzi (IGAC) 2006. Manual de análisisquímico de suelos, IGAC, Bogotá.
  9. LI, X., HE, J.Z., Hughes, J.M., LIU, Y.R., and Zheng, Y.M. 2014. Effects of superabsorbent polymers on a soil–wheat (Triticumaestivum L.) system in the fild, Applied Soil Ecology 73:58-63.
  10. Mohammed, M.A., Eldeen Mohammed, R.D., and Fathy, A. 2013. Conditioning Effect of Different Absorbant Polymers on Physical and Chemical Properties of Sandy Soil, Journal of Functional and Environmental Botany, 3:82-93.
  11. Mukhopadhyay, R., Gajrib, PR., and Chaudhary ,MR. 1994. Synthesis of a soil conditioner from acrylic waste and its effect on aggregate stability and moisture retention in two soils. Arid Soil Research and Rehabilitation 8(2):179-186.
  12. Nightingale, E.R. 1959. Phenomenological Theory of Ion Solvation.Effective Radii of Hydrated Ions. The Journal of Physical Chemistry, 63:1381-1387.
  13. Pardo, S., Suárez, H., y Pertuz, V. 2009. Interacción de los suelos sulfatados ácidos con el agua y sus efectos en la sobrevivencia del bocachico (Prochilodusmagdalenae) en cultivo, Revista Colombiana de Ciencias Pecuarias, 22:619-631.
  14. Powell, B., Martens, M. 2005. A review of acid sulfate soil impacts, actions and policies that impact on water quality in Great Barrier Reef catchments, including a case study on remediation at East Trinity Marine, Pollution Bulletin, 51:149-164. TEMAS AGRARIOS - Vol. 20:(1) Enero - Junio 2015 (60 - 70)
  15. Rivas, B., Pereira, E., Palencia, M., y Sanchez, J. 2011. Water-soluble functional polymers in conjunction with membranes to remove pollutant ions from aqueous solutions, Progress in Polymer Science, 36:294-322.
  16. Szilagyi, I., Trefalt, G., Tiraferri, A., Maroni, P., and Borkovec, M. 2014. Polyelectrolyte adsorption, interparticle forces, and colloidal aggregation. Soft Matter 15(10):2479-2502.
  17. Wallace, A., Wallace, G. 1986. Effects of very low rates of synthetic soil conditioners on soils, Soil Science, 141:324-327.
  18. Wallace, A, Terry, R. 1998. Handbook of Soil Conditioners: Substances That Enhance the Physical Properties of Soil: Substances That Enhance the Physical Properties of Soil. CRC Press. 600 p.

Sistema OJS 3.4.0.3 - Metabiblioteca |