Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Efecto de la solarización en patógenos fungosos que afectan al Eucalipto (Eucalyptus urograndis) en condiciones de vivero

Effect of solarization on fungal pathogens affecting Eucalyptus (Eucalyptus urograndis) under nursery conditions.



Cómo citar
Ruiz Díaz , M. ., Campo Arana, R. O., & Royet Barroso, J. D. J. (2022). Efecto de la solarización en patógenos fungosos que afectan al Eucalipto (Eucalyptus urograndis) en condiciones de vivero. Temas Agrarios, 27(1), 211-219. https://doi.org/10.21897/rta.v27i1.3039

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Mariana Ruiz Díaz
Rodrigo Orlando Campo Arana
Jhoandys De Jesús Royet Barroso

Eucalyptus es el género de árboles de madera dura más cultivado mundialmente, valorado por su rendimiento y la calidad de la madera para múltiples usos; sin embargo, los patógenos como Rhizoctonia y Cylindrocladium ponen en riesgo el establecimiento del cultivo, debido a que causan muerte de plántulas en vivero. Dentro de las estrategias de manejo se recomienda la desinfección del sustrato, siendo la solarización una alternativa eficaz para el manejo de hongos del suelo. El objetivo de esta investigación fue verificar la sobrevivencia de Rhizoctonia spp. y Cylindrocladium spp. en un sustrato de vivero sometido a solarización. El sustrato fue inoculado con dos aislamientos fúngicos (Rhizoctonia spp. y Cylindrocladium spp.) a tres profundidades (5, 10 y 15 cm), y tratados con tres métodos de solarización (Libre exposición, solarización y solarización + dazomet). Se midió la sobrevivencia de los patógenos en el sustrato a los 15, 30 y 55 días después de la inoculación, y la temperatura a 10 y 15 cm de profundidad. La solarización por sí sola no tuvo efecto sobre la mortalidad de los patógenos. La solarización más dazomet disminuyó la presencia de los hongos en un 100% en todos las profundidades y tiempos de evaluación. Los tratamientos solarizados aumentaron la temperatura del sustrato en 49 y 40°C a 10 y 15 cm de profundidad, respectivamente, con un incremento de 10 y 7°C respecto al testigo. Por tanto, la solarización más la aplicación de dazomet puede emplearse como método de desinfección de sustratos en vivero de Eucalipto.


Visitas del artículo 334 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Abd-Elgawad, M., Elshahawy, I. y Abd-El-Kareem, F. 2019. Efficacy of soil solarization on black root rot disease and speculation on its leverage on nematodes and weeds of strawberry in Egypt. Bulletin of the National Research Centre, 43(1): 1-7. https://doi.org/10.1186/s42269-019-0236-1
  2. Aiello, D., Guarnaccia, V., Vitale, A., LeBlanc, N., Shishkoff, N. y Polizzi, G. 2022. Impact of Calonectria Diseases on Ornamental Horticulture: Diagnosis and Control Strategies. Plant Disease, 106(7):1773-1787. https://doi.org/10.1094/PDIS-11-21-2610-FE
  3. Aiello, D., Vitale, A., Alfenas, R. F., Alfenas, A. C., Cirvilleri, G. y Polizzi, G. 2018. Effects of sublabeled rates of dazomet and metam-sodium applied under low-permeability films on Calonectria microsclerotia survival. Plant disease, 102(4): 782-789. https://doi.org/10.1094/PDIS-05-17-0713-RE
  4. Ajayi, O. y Bradley, C. A. 2018. Rhizoctonia solani: taxonomy, population biology and management of rhizoctonia seedling disease of soybean. Plant pathology, 67(1): 3-17. https://doi.org/10.1111/ppa.12733
  5. Barnett, H y Hunter, B. 1998. Illustrated genera of imperfect fungi. (4ta ed). p108-196
  6. Baysal, F., Kabir, M. y Liyanapathiranage, P. 2019. Effect of organic inputs and solarization for the suppression of Rhizoctonia solani in woody ornamental plant production. Plants, 8(5): 138. https://doi.org/10.3390/plants8050138
  7. Bidima, M., Chtaina, N., Ezzahiri, B., El Guilli, M. y Barakat, I. 2022. Effect of soil solarization and organic amendments on Sclerotium rolfsii Sacc sclerotia. Archives of Phytopathology and Plant Protection, 55(8): 1-17. https://doi.org/10.1080/03235408.2022.2081526
  8. Cuong, T., Chinh, T., Zhang, Y. y Xie, Y. 2020. Economic performance of forest plantations in Vietnam: Eucalyptus, Acacia mangium, and Manglietia conifera. Forests, 11(3): 284. https://doi.org/10.3390/f11030284
  9. Da Silveira, S., Alfenas, A., Ferreira, F. y Sutton, J. C. 2000. Characterization of Rhizoctonia species associated with foliar necrosis and leaf scorch of clonally-propagated Eucalyptus in Brazil. European Journal of Plant Pathology, 106(1): 27-36. https://doi.org/10.1023/A:1008708314224
  10. dos Santos, A., da Costa, J., da Silva, S., de Queiroz, L, da Silva, S., Xavier, W. y Soares, A. 2021. Eficiência in vivo de extratos naturais com potencial antagonista ao fungo do gênero Cylindrocladium em mudas de eucalipto. Brazilian Journal of Development, 7(1): 2646-2658. https://doi.org/10.34117/bjdv7n1-180
  11. Dwivedi, N. y Dwivedi, S. 2020. Soil solarization: An ecofriendly technique to eradicate soil Fusaria causing wilt disease in guava (Psidium guajava). International Journal of Fruit Science, 20(3): 1765-1772. https://doi.org/10.1080/15538362.2020.1833808
  12. Funahashi, F. y Parke, J. 2018. Thermal inactivation of inoculum of two Phytophthora species by intermittent versus constant heat. Phytopathology, 108(7): 829-836. https://doi.org/10.1094/PHYTO-06-17-0205-R
  13. Funahashi, F., Myrold, D. y Parke, J. 2022. The effects of soil solarization and application of a Trichoderma biocontrol agent on soil fungal and prokaryotic communities. Soil Science Society of America Journal, 86(2): 369-383. https://doi.org/10.1002/saj2.20361
  14. Gullino, M., Garibaldi, A., Gamliel, A. y Katan, J. 2022. Soil Disinfestation: From Soil Treatment to Soil and Plant Health. Plant Disease, 106(6): 1541-1554. https://doi.org/10.1094/PDIS-09-21-2023-FE
  15. Hasan, Ö. 2018. A new approach to soil solarization: Addition of biochar to the effect of soil temperature and quality and yield parameters of lettuce (Lactuca sativa L. Duna). Scientia Horticulturae, 228, 153-161. https://doi.org/10.1016/j.scienta.2017.10.021
  16. Instituto de hidrología meteorología y estudios ambientales (IDEAM). 2022. Consulta y Descarga de Datos Hidrometeorológicos. http://dhime.ideam.gov.co/atencionciudadano/
  17. Jabnoun, H., Mejdoub, B., Aydi, R., El-Mohamedy, R. y Daami, M. 2020. Efficacy of Organic Amendments and Soil Solarization against Wilt Severity and their Effects on Pathogenic Fungi and Tomato Production. International Journal of Phytopathology, 9(2): 93-103. https://doi.org/10.33687/phytopath.009.02.3317
  18. Kadam, J., Joshi, M., Borkar, P. y Dhekale, J. 2018. Integration of soil solarization and fungicides for management of damping-off of chilli. Journal of Plant Disease Sciences, 13(1): 73-79.
  19. Klinsukon, C., Ekprasert, J. y Boonlue, S. 2021. Using arbuscular mycorrhizal fungi (Gigaspora margarita) as a growth promoter and biocontrol of leaf blight disease in eucalyptus seedlings caused by Cylindrocladium quinqueseptatum. Rhizosphere, 20, 100450. https://doi.org/10.1016/j.rhisph.2021.100450
  20. Liu, L., Wu, W. y Chen, S. 2021. Species diversity and distribution characteristics of Calonectria in five soil layers in a Eucalyptus plantation. Journal of Fungi, 7(10): 857. https://doi.org/10.3390/jof7100857
  21. Marco de Lima, B., Cappa, E., Silva, O., Garcia, C., Mansfield, S. y Grattapaglia, D. 2019. Quantitative genetic parameters for growth and wood properties in Eucalyptus “urograndis” hybrid using near-infrared phenotyping and genome-wide SNP-based relationships. PloS one, 14(6): e0218747. https://doi.org/10.1371/journal.pone.0218747
  22. Miller, M., Shishkoff, N. y Cubeta, M. 2018. Thermal sensitivity of Calonectria henricotiae and Calonectria pseudonaviculata conidia and microsclerotia. Mycologia, 110(3): 546-558. https://doi.org/10.1080/00275514.2018.1465778
  23. Mohanan, C. 2007. Biological control of seedling diseases in forest nurseries in Kerala. Journal of Biological Control, 21(2): 189-195.
  24. Programa para los Bosques (PROFOR). 2017. Situación actual y potenciales de fomento de plantaciones forestales con fines comerciales en Colombia. Bogotá, Colombia: Banco Mundial. 172 p
  25. R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  26. Rezende, E., Duin, I., Coelho, T., Soares, I., Higa, A., Santos, Á. y Auer, C. 2019. Avaliação da resistência de progênies de Eucalyptus grandis para mancha foliar de Cylindrocladium e Kirramyces. Summa Phytopathologica, 45(3): 295-301. https://doi.org/10.1590/0100-5405/191990
  27. Rubayet, M., Bhuiyan, M., Jannat, R., Masum, M. y Hossain, M. 2018. Effect of biofumigation and soil solarization on stem canker and black scurf diseases of potato (Solanum tuberosum L.) caused by Rhizoctonia solani isolate PR2. Advances in Agricultural Science, 6(3), 33-48.
  28. Salvador, S., Schumacher, M., Sthal, J., Ludvichak, A., Momolli, D. y Consensa, C. 2019. Effects of soil type in nutrient amount in eucalyptus urograndis: Macronutrients. Journal of Experimental Agriculture International, 35(3), 1-9.
  29. Sanfuentes, E., Alfenas, A., Maffia, L. y Mafia, R. 2007. Caracterização de isolados de Rhizoctonia spp. e identificação de novos grupos de anastomose em jardim clonal de eucalipto. Fitopatologia Brasileira, 32(3): 229-236. https://doi.org/10.1590/S0100-41582007000300007
  30. Sanfuentes, E., Alfenas, A., Maffia, L. y Silveira, S. 2002. Comparison of baits to quantify inoculum density of Rhizoctonia spp. in Eucalyptus clonal garden soils. Australasian Plant Pathology, 31(2): 177-183. https://doi.org/10.1071/AP02004
  31. Santori, A., Zinser, J., Yokota, M., Ronca, A., Minuto, A. y Myrta, A. 2021. Basamid effectivity against strawberry soil-borne pests in Europe. IX International Strawberry Symposium. Volume 1 and 2. Acta Horticulturae no. 1309. Rimini, Italy, 28 April 2021, p759-764. https://doi.org/10.17660/ActaHortic.2021.1309.108
  32. Shlevin, E., Gamliel, A., Katan, J. y Shtienberg, D. 2018. Multi-study analysis of the added benefits of combining soil solarization with fumigants or non-chemical measures. Crop Protection, 111, 58-65. https://doi.org/10.1016/j.cropro.2018.05.001
  33. Simeto, S., Balmelli, G. y Pérez, C. 2020. Diseases of Eucalyptus Plantations in Uruguay: Current State and Management Alternatives. In: Estay, S. (eds) Forest Pest and Disease Management in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-030-35143-4_9
  34. Singh, A y Dhillon, G. 2020. Evaluation of Eucalyptus Clones Under Seasonal Waterlogging Conditions in South-Western Punjab. Current Agriculture Research Journal, 8(2): 98-103. http://dx.doi.org/10.12944/CARJ.8.2.04
  35. Villarino, M., Larena, I., Melgarejo, P. y De Cal, A. 2021. Effect of chemical alternatives to methyl bromide on soil‐borne disease incidence and fungal populations in Spanish strawberry nurseries: A long‐term study. Pest Management Science, 77(2): 766-774. https://doi.org/10.1002/ps.6077
  36. Vitale, A., Castello, I., D’Emilio, A., Mazzarella, R., Perrone, G., Epifani, F. y Polizzi, G. 2013. Short-term effects of soil solarization in suppressing Calonectria microsclerotia. Plant and soil, 368(1): 603-617. https://doi.org/10.1007/s11104-012-1544-5

Sistema OJS 3.4.0.3 - Metabiblioteca |