Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Extração e Caracterização do Amido de Inhame e Desenvolvimento de Filmes Comestíveis Antimicrobianos

Extraction and caracterized of yam starch and development antimicrobian edibles films



Cómo citar
Durango Villadiego, A. M., Soarez, N., & Andrade, N. (2009). Extração e Caracterização do Amido de Inhame e Desenvolvimento de Filmes Comestíveis Antimicrobianos. Temas Agrarios, 14(2), 33-42. https://doi.org/10.21897/rta.v14i2.672

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Alba Manuela Durango Villadiego
Nilda Soarez
Nelio Andrade

O objetivo deste trabalho foi extrair e caracterizar o amido do inhame Dioscorea alata e desenvolver filmes antimicrobianos. O amido foi extraído e determinado sua composição físicoquímica e propriedades reológicas. Foram preparados filmes de 4% de amido (p/p) + 2% de glicerol (p/p) y filmes de amido + glicerol + quitosana em concentrações de 0,5; 0,75; 1,0 e 1,5% pelo método “casting” e determinadas suas permeabilidades ao vapor de água. O rendimento do processo de extração foi de 9,3%. Os componentes físico-químicos em base seca: 11,57% para umidade, 0,64% de proteínas, 0,052% de matéria graxa e 0,17% de cinzas. O conteúdo de amido e amilose foram 99,17% e 22%, respectivamente. A densidade absoluta foi de 1,522 g mL-1. Os índices de absorção de água e solubilidade a temperatura ambiente foram de 1,84 e 0,46, respectivamente, aumentando para 15,76 e 19,32 em temperatura de 100 ºC. A temperatura inicial de pasta foi de 60,3 ºC e a máxima temperatura de viscosidade foi de 98,5 ºC, apresentando baixa tendência a retrogradação (100 UA). Os filmes produzidos foram visualmente transparentes com espessuras de 30 ± 5 µm. Os valores de permeabilidade dos filmes foram estatisticamente diferentes (Pr< 0,05), com valores de 4,58 g mm kPa-1 d-1 m-2, para o filme de amido + glicerol, e 3,57 g mm kPa-1 d-1m-2, para o filme de amido + glicerol + 1,5% de quitosana, diminuindo esta com o aumento do teor de quitosana. O amido de inhame representa uma boa fonte para a produção de filmes comestíveis com grande potencial de aplicação na indústria de alimentos.


Visitas del artículo 1476 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Abramo, M. 1990. Taioba, cará e inhame: o grande potencial inexplorado. Ícone, São Paulo, 80 p.
  2. Alves, R., Grossmann, M. y Silva, R. 1999. Gelling properties of extruded yam (Dioscorea alata) starch. Food Chemistry 67:123-127.
  3. AACC (American Association of Cereal Chemists). 1982. Approved Methods of the AACC. St. Paul, AACC, p22-10.
  4. ASTM (American Society for testing and materials). 1995. Standards test methods for water vapor tansmission of materials - E - 95. ASTM, Philadelphia, 8p.
  5. Anuário a granja do ano. 1994. Cará e Inhame. Centaurus, São Paulo, p30-35.AOAC (Association of Official Analytical Chemistry). 1995. Official
  6. Methods of Analysis. 16th ed. Arlington, TX: Association of official Analytical Chemistry. Vol. 2.
  7. Arvanitoyannis, I.; Nakayama, A. y Aiba, S. 1998. Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohydrate Polymers 36:105-119.
  8. Cereda, M. 2001. Culturas de Tuberosas Amilâceas Latino Americanas. Cargill, São Paulo, Vol. 2. p511-518.
  9. Ciacco, C. y Cruz, R. 1982. Fabricação de amido e sua utilização. Série Tecnologia Agroindustrial, Secretaria de Indústria, Comércio, Ciência e Tecnologia, São Paulo, 152p.
  10. Cruz, R. y EL Dash, A. A. 1984. Isolamento e caracterização de amido de chuchu. Revista Ceres 31(175):173-188.
  11. Daiúto, E. y Cereda, M. 2003. Extração de fécula inhame (Dioscorea sp). En: Cereda, M. y Vilpoux, O. (Eds). Culturas de Tuberosas Amilâceas Latino Americanas. Cargill, São Paulo, p177-190.
  12. Emiola, L. y Delarosa, L. 1981. Physicochemical characteristics of yam starches. Journal of Food Biochemistry 5:115-130.
  13. García, M., Martino, M. y Zaritzky N. 1999. Edible starch Films and coatings characterization: scanning electron microscopy, water vapor, and gas permeabilities. Scanning 21(5):348-353.
  14. García, M., Martino, M. y Zaritzky N. 2000. Lipid addition to improve barrier properties of edible starch-based films and coatings. Journal of Food Science 65(6):941-947.
  15. Gennadios, A. y Weller, C. 1990. Edible films and coatings from wheat and corn proteins. Food Technology 44(10):63-69.
  16. Gontard, N., Guilbert, S., y Cuq, B. 1992. Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. Journal of Food Science 57(1):190-195.
  17. Guilbert, S., Gontard, N. y Gorris G. 1996. Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. Lebensmittel- Wissenschoft und- Technologie 29(1-2):10-17.
  18. Hagenmaier, R. y Shaw, P. 1990. Moisture permeability of edible films made with fatty acid and hydroxypropyl methylcellulose. Journal of Agriculture Food Chemistry 38:1799-1803.
  19. Klahorst, S. 1999. Applications: Credible Edible Films. Food Product Design 9(1):1-6.
  20. Krochta, J. y Demulder-Johnston C. 1997. Edible and biodegradable polymer films: challengers and opportunities. Food Technology 51(2):61-74.
  21. Lawton, J. 1996. Effect of starch type on the properties of starch containing films. Carbohydrate Polymers 29:203-208.
  22. Lehninger, A.; Nelson, D. y Cox, M. 1995. Princípios de Bioquímica. Sarvier, São Paulo, 839 p.
  23. Leonel, M.; Cereda, M. 2002. Caracterização físico-química de algumas tuberosas amiláceas. Ciência e Tecnologia de Alimentos 22(1).
  24. Mali, S.; Grossmann, M.; García, M.; Martino, M. y Zaritzky N. 2002. Microstructural characterization of yam starch films. Carbohydrate Polymers 50:379-386.
  25. Mali, S.; Grossmann, M.; García, M.; Martino, M. y Zaritzky N. 2004. Barrier, mechanical and optical properties of plasticized yam starch films. Carbohydrate Polymers 56(2):129-135.
  26. Mchugh, T.; Avena-Bustillos, R. y Krochta, J. 1993. Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science 58(4):899-903.
  27. Mchugh, T. y Krochta, J. 1994. Permeability Properties of Edible Films. En: Krotcha, J.; Baldwin, E. y Nisperos-Carriedo, M. (Ed). Edible Coatings and Films to Improve Food Quality. Technomic, Pennsylvania, 379 p.
  28. Mchugh, T.; Huxsoll, C. y Krochta, J. 1996. Permeability properties of fruit puree edible films. Journal of Food Science 61(1):88-91.
  29. Omonigho, S. y Ikenebomeh, M. 2000. Effects of different preservative treatments on the chemical changes of pounded white yam (Dioscorea rotundata) in storage at 28 ± 2 ºC. Food Chemistry 68:201-209.
  30. Park, H. y Chinnan, M. 1995. Gas and water vapor barrier of edible films from protein and cellulose materials. Journal of Food Engineering 25:497-507.
  31. Petersen, K.; Nielsen, P.; Bertelsen, G.; Lawther, M.; Olsen, M.; Nilsson, N. y Mortensen, G. 1999. Potential of biobased materials for food packaging. Food Science and Technology, 10:52-68.
  32. Santos, E. 1996. Inhame (Dioscorea spp.): aspectos básicos da cultura. EMEPA-PB, SEBRAE, João Pessoa, 158p.
  33. Schoch, T. 1964. Swelling power and solubility of granular starches. En: Whistler, R. y Wolfrom, M. (Ed). Methods in Carbohydrates Chemistry, Academic Press, New York, p106 – 108.
  34. Schoch, T. y Leach, H. 1964. Determination of Absolute Density. Liquid Displacement. En: Whistler, R. y Wolfrom, M. (Ed). Methods in Carbohydrates Chemistry, Academic Press, New York, p101–103.

Sistema OJS 3.4.0.3 - Metabiblioteca |