Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Cambios diarios del contenido de pigmentos fotosintéticos en hojas de caléndula bajo sol y sombra

Diurnal changes in photosyntheticpigments content in sun and shade marigold leaves



Cómo citar
Casierra-Posada, F., Ávila-León, O., & Riascos-Ortíz, D. (2012). Cambios diarios del contenido de pigmentos fotosintéticos en hojas de caléndula bajo sol y sombra. Temas Agrarios, 17(1), 60-71. https://doi.org/10.21897/rta.v17i1.697

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Fanor Casierra-Posada
Omar Ávila-León
Donald Riascos-Ortíz

La caléndula (Calendula officinalis L.) es una planta medicinal de gran importancia en la medicina no convencional, desde la homeopatía hasta la medicina oriental. La comercialización de caléndula se encuentra en segundo lugar en Colombia, entre las plantas utilizadas para la fitofarmacia de especies medicinales. Se realizó un estudio en Tunja, Colombia, en el que se evaluó cada hora el contenido de clorofilas y carotenos, en plantas de caléndula cultivadas a plena exposición y bajo una malla de polisombra del 37% de reducción de luz. La extracción de los pigmentos se realizó por dilución en metanol y su concentración se determinó con un espectrofotómetro. Se encontró que los contenidos de clorofila b, carotenos y clorofila total mostraron diferencias a lo largo del día con tendencia al incremento entre las 6:00 y 18:00 horas. La sombra afectó las relaciones clorofila a / clorofila b y carotenos / clorofila. Mientras que el valor de la relación clorofila a / clorofila b fue más elevado en hojas de plantas sombreadas, el valor de la relación carotenos / clorofila fue más alto en las plantas que crecieron a plena exposición. Los cambios diarios en el contenido de pigmentos han sido motivo de controversia a través de los resultados de muchos trabajos, sin embargo, se debe tomar en consideración que la concentración de pigmentos varía con la edad de las hojas y con la especie.

Visitas del artículo 5711 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Aronoff, S. 1959. The “turnover” of chlorophyll. In: Radiation Biology & Medicine, W. D. Claus,ed. Addison-Wesley Pub. Co., Reading, Mass. p634-639.
  2. Bauer, A. 1958. Die Konstanz des Chlorophyllgehaltes bei Laubblittern im Laufe eines Tages. Planta 51:84-98.
  3. Bavrina, T.C. 1959. Diurnal changes of chlorophyllcontent in leaves. Fiziol. Rastenii 6:213-216.
  4. Carter, A.G. y Spiering, B.A. 2002. Optical properties of intact leaves forestimating chlorophyll concentration. J. Environ. Qual 31:1424-1432.
  5. Castro, K.L. y Sanchez-Azofeifa, G.A. 2008. Changes in spectral properties, chlorophyll content andinternal mesophyll structure of senescing Populus balsamifera and Populus tremuloides leaves. Sensors 8:51-69.
  6. Casierra-Posada, F. 2007. Fotoinhibición: Respuesta fisiológica de los vegetales al estrés por exceso de luz. Revista Colombiana de Ciencias Hortícolas 1(1):114-123.
  7. Chauser-Volfson, E. y Gutterman, Y. 1998. Content and distribution of anthrone C-glycosides in the South African arid plant species Aloe mutabilis growing in the direct sunlight and the shade in the Negev Desert of Israel. J. Arid Environ 40:441-451.
  8. Coleman, J.W. y Rabinowitch, E. 1959. Evidenceof photoreduction of chlorophyll in vivo. J. Phys. Chem 63:30-34.
  9. Coelho, G.C., Rachwal, M.F.G., Dedecek, R.A., Curcio, G.R., Nietsche, K. y Schenkel, E.P. 2007. Effect of light intensity on methylxanthine contents of Ilex paraguariensis A. St. Hil. Biochem. Syst. Ecol 35:75-80.
  10. Corporación Colombia Internacional. 2004. Plantas aromáticas y aceites esenciales. Inteligencia de mercados 24. Perfil del producto. http://www.agronet.gov.co/ www/docs_agronet/2005113151357_ perfil_producto_Aromaticas.pdf [27 Febrero 2012].
  11. Daughtry, C.S.T., Walthall, C.L., Kim, M.S., Brown de Colstoun, E. y McMurtrey III, J.E. 2000. Estimating corn leaf chlorophyll concentrationfrom leaf and canopy reflectance. Remote Sens. Environ 74:229-239.
  12. Duque, A. 2001. Encuesta nacional de plantas medicinales y aromáticas una aproximación al mercado de las PMyA en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Biocomercio Sostenible. Available online at: http://farmacia.udea.edu.co/~ff/ Comercio.pdf [1 Diciembre 2011].
  13. Fischer, G. 2000. Ecophysiological aspects of fruit growing in tropical highlands. Acta Hort. (ISHS) 531:91-98.
  14. Friend, D.J.C. 1961. The control of chlorophyllaccumulation in leaves of Marquis wheat by temperatureand light intensity. Physiol. Plantarum14:28-39.
  15. Garcia-Plazaola, J.I., Hernández, A. y Becerril, J.M. 2003. Antioxidant and pigment composition duringautumnal leaf senescence in woody deciduous species differing in their ecological traits. Plant Biol 5:557-566.
  16. Gitelson, A.A., Merzlyak, M.N. y Lichtenhaler, H. 1996. Detection of red edge positionand chlorophyll content by reflectance measurementsnear 700 nm. Journal of Plant Phisiology 148:501-508.
  17. Heyes, D.J. y Hunter, C.N. 2005. Making light work of enzyme catalysis: protochlorophyllide oxidoreductase. Trends Biochem. Sci. 30:642-649.
  18. Hou, J.-L., Li, W.-D., Zheng, Q-Y, Wang, W-Q, Xiao, B. y Xing, D. 2010. Effect of low light intensity on growth and accumulation of secondary metabolites in roots of Glycyrrhiza uralensis Fisch. Biochemical Systematics and Ecology 38:160-168.
  19. Johnson, G.N., Scholes, J.D., Horton, P. y Young, A.J. 1993. Relationshipsbetween carotenoid composition and growth habit in British plantspecies. Plant Cell Environ 16:681-686.
  20. Krasnovsky, A.A. 1958. Reduction photochimique reversible de la chlorophylle et de ses analoqueset mecanisme de la photosensibilisation. J. Chimie Physique p968-979.
  21. Larcher, W. 1995. Physiological plant ecology. Springer, Berlin p506.
  22. Lei, T.T., Tabuchi, R., Kitao, M. y Koike, T. 1996. Functional relationship between chlorophyll contentand leaf reflectance, and light-capturing efficiency of Japanese forest species. Physiol. Planta 96:411-418.
  23. Lichtenthaler, H. y Wellburn, A. 1983. Determination of total carotenoids andchlorophyll a and b of leaf extract in different solvents. Biochem. Soc. Trans. 603:591-592.
  24. Mitrakos, K. 1959. Tagesperiodische Schwankungen der Fähigkeit zur Chlorophyllbildung. Planta 52:583-586.
  25. Mitrakos, K. 1960. Kurzperiodische Schwankungenin Chlorophyllgehalt von Kotyledonen verschiedener Entwicklungsstadien. Planta 54:365-370.
  26. Muramoto, T., Kohchia, T., Yokota, A., Hwang, I. y Goodman, H.M. 1999. The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11:335-348.
  27. Nagel, K.A. 2006. Abhängigkeit des Wurzelwachstumsvom Lichtregime des Sprosses undderen Modifikation durch Nährstoffesowie im Gravitropismus. Tesis doctoral.Schriften des Forschungszentrums JülichReihe Umwelt /EnvironmentBand. Universität Düsseldorf 6:119.
  28. Powels, S.B. 1984. Photoinhibition of photosynthesis induced by visible light. Annu. Rev. Plant Physiol 35:14-44.
  29. Ralphs, M.H., Manners, G.D. y Gardner, D.R., 1998. Influence of light and photosynthesis on alkaloid concentration in larkspur. J. Chem. Ecol. 24:167-182.
  30. Reinbothe, S. y Reinbothe, C. 1996. The regulation of enzymes involved in chlorophyll biosynthesis. Eur. J. Biochem 237:323–343.
  31. Reinbothe, C., El Bakkouri, M., Buhr, F., Muraki, N., Nomata, J., Kurisu, G., Fujita, Y. y Reinbothe, S. 2010. Chlorophyll biosynthesis: Spotlight on protochlorophyllide reduction. Trends in Plant Science 15(11):614-624.
  32. Seybold, A. y Falk, H. 1959. Die Heidelberger Chlorophyll bestimmungen- Eine Uberprüfung. Planta 53:339-375.
  33. Syvertsen, J.P., Lloyd, J., McConchie, C., Kriedemann, P.E. y Farquahar, G. 1995. On the relationship between leaf anatomy and CO2diffusion through the mesophyll of Hypostomatous leaves. Plant, Cell and Environment 18:149-157.
  34. Ulehla, J. 1961. Correlative inhibition of formationof chloroplhyll in the leaves of etiolated peaplants. Nature 191:613414.
  35. Ustin, S.L., Smith, M.O., Jacquemoud, S., Verstraete, M.M., y Govaerts, Y. 1998. GeoBotany: Vegetation mapping for Earth sciences, in Manual of Remote Sensing, Remote Sensing for the Earth Sciences, edited by A. N. Rencz, 3rd ed., John Wiley, Hoboken, N. J. 3:189248.
  36. Utkilen, H.C., Briseid, T y Eriksson, B. 1983. Variation in photosynthetic membrane and pigment content with lightintensity for Anacystis nidulansgrown in continuous cultures. Journal of General Microbiology 129:1717-1720.
  37. Virgin, H.I. 1961. On the formation of protochlorophyllin normal green wheat leaves of varyingage. Physiol. Plantarum 14: 384-392.
  38. Wickliff, J.L. y Aronoff, S. 1962. Evidence for absence of diurnal variation of chlorophyll content in mature leaves of soybean. Plant Physiol. 37(5):590-594.
  39. Wu, C., Niu, Z., Tang, Q. y Wang, W. 2008. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology 148:1230-1241.
  40. Zarco-Tejada, P.J., Miller, J.R., Morales, A., Berjon, A. y Aguera, J. 2004. Hyperspectral indices and model simulation forchlorophyll estimation in open-canopy tree crops. RemoteSens. Environ. 90:463-476.
  41. Zhang, Y., Chen, J.M. y Thomas, S.C. 2007. Retrieving seasonal variation in chlorophyll content of overstory and understory sugar maple leaves from leaflevel hyperspectral data. Can. J. Remote Sensing. 33(5):406-415.

Sistema OJS 3.4.0.3 - Metabiblioteca |