Desarrollo de marcadores moleculares para la identificación de especies de Eucalyptus
Development of molecular markers for the Eucalyptus species identification
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Mostrar biografía de los autores
Uno de los principales problemas que enfrentan los programas de mejoramiento genético en eucaliptos es la dificultad para identificar las especies e híbridos. El objetivo de este estudio fue encontrar marcadores moleculares asociados a cinco especies de Eucalyptus (E. saligna, E. tereticornis, E. urophylla, E. grandis and E. brassiana), mediante marcadores AFLP (Amplified Fragment Length Polymorphism) y BSA (Bulk Segregant Analysis), para su uso en programas de mejoramiento genético en Brasil. En 33 combinaciones de cebadores, se obtuvo un total de 868 fragmentos polimórficos, que representan un 91,65% del polimorfismo. Las mejores combinaciones que muestran potenciales marcadores para la identificación de especies, fueron encontradas en los cebadores M+GGT/E+ACC, que estuvo un 70% de los individuos asociados a la especie E. urophylla. Sin embargo, la combinación de cebadores compuesta de M+GGA/E+ACC identificó el 60% de individuos en la especie E. saligna; la combinación de los cebadores M+GTC/E +AAC, confirmó dos marcas, una en 60% y la otra en 50% para la identificación de individuos de la especie E. grandis. El tratamiento compuesto por los cebadores M+GGC/E+AAA, confirmó un 30% de los individuos perteneciente a la especie E. brassiana, siendo igual para la combinación de cebadores M+GGC/E+ACC, identificando el 30% de los individuos de la especie E. tereticornis. El análisis AFLP en asocio a BSA proporcionan una herramienta rápida para la identificación de cultivares en Eucalyptus, a la vez de que puede ser usados en los programas de mejoramiento genético forestal.
Visitas del artículo 1196 | Visitas PDF
Descargas
- Ballesta, P., Mora, F., Contreras-Soto, R. I., Ruiz, E. and Perret, S. 2015. Analysis of the genetic diversity of Eucalyptus cla-docalyx (sugar gum) using ISSR markers. Acta Scientiarum. Agronomy, 37(2): 133. https://doi.org/10.4025/actasciagron.v37i2.19307.
- Barbour, R., Potts, B and Vaillancourt, R. 2005. Pollen dispersal from exotic Eucalyptus plantations. Cons. Genet. 6: 253–257. https://doi.org/10.1007/s10592-004-7849-z
- Blanco, M. and Valverde, R. 2005. Análisis de segregantes agrupados (BSA) para la deteccion de AFLPS ligados al GEN de resistencia a PVX Solanum commersonii. Agronomia Costarricense, 29(2): 45–55.
- Brondani, R., Brondani, C., Tarchini, R. and Grattapaglia, D. 1998. Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theo App Gen, 97: 816-827. https://doi.org/10.1007/s001220050961.
- Creste, S., Tulmann Neto, A. and Figueira, A. 2001. Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Molecular Biology Reporter, 19: 299-306. https://doi.org/10.1007/BF02772828.
- Denison, N. and Kietzka, J. 1993. The use and importance of hybrid intensive forestry in South Africa. South Afri Fore J 165: 55- 60. https://doi.org/10.1080/00382167.1993.9629390.
- Domingues, D. S., Cazerta, A., Costrato, V., José, D. Oda, S., Marino, C. L. and Marino, L. 2006. Identificação de marcador RAPD e SCAR relacionados ao caractere florescimento precoce em Eucalyptus grandis. Ciência Florestal, 16(3): 251–260. Retrieved from http://doi.org/10.5902/198050981906.
- Doyle, J. and Doyle, J. 1990. Isolation of plant DNA from fresh tissue. Focus, 12: 13–15.
- Forrester, D. I. and Smith, R. 2012. Faster growth of Eucalyptus grandis and Eucalyptus pilularis in mixed-species stands than monocultures. Forest Ecology and Management, 286: 81–86. https://doi.org/10.1016/j.foreco.2012.08.037.
- Fuchs, M., Lourenção, J., Tambarussi, E., Bortoloto, T., Oda, S., Nogueira, F. and Marino, C. 2011. Genome characterization of a Eucalyptus natural mutant. BMC Proceedings, 5(7): 65. https://doi.org/10.1186/1753-6561-5- S7-P65.
- Gonçalves, J., Alvares, C., Higa, A., Silva, L., Alfenas, A., Stahl, J. and Epron, D 2013. Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. Forest Ecology and Management, 301: 6–27. https://doi.org/10.1016/j.foreco.2012.12.030.
- Grattapaglia, D. and Kirst, M. 2008. Eucalyptus applied genomics: from gene sequences to breeding tools. The New Phytologist, 179(4): 911–29. https://doi.org/10.1111/j.1469-8137.2008.02503.x.
- Grattapaglia, D., Ribeiro, V. and Rezende, G. 2004. Retrospective selection of elite parent trees using paternity testing with microsatellite markers: an alternative short term breeding tactic for Eucalyptus. TAG Theoretical and Applied Genetics, 109(1): 192–199. https://doi.org/10.1007/s00122-004-1617-9.
- Guthridge, K., Dupal, M., Kölliker, R., Jones, E., Smith, K. and Forster, J. 2001. AFLP analysis of genetic diversity within and between populations of perennial ryegrass (Lolium perenne L.). Euphytica, 122: 191–201. https://doi.org/10.1023/A:1012658315290.
- Harwood, C. 2011. New introductions - doing it right. In Developing a eucalypt resource. Learning from Australia and elsewhere. Ed. J. Walker. Wood Technology Research Centre, University of Canterbury, Christchurch, New Zealand: 125–136
- Herrmann, D., Boller, B., Widmer, F. and Kölliker, R. 2005. Optimization of bulked AFLP analysis and its application for exploring diversity of natural and cultivated populations of red clover. Genome / National Research Council Canada = Génome / Conseil National de Recherches Canada, 48(3): 474–86. https://doi.org/10.1139/g05-011.
- IBA. Indústria Brasileira de árvores- iba. 2015. Available online: http://www.iba.org/shared/iba_2014_pt.pdf. (accessed on 23 april 2017).
- Ishii, K. 2009. DNA Markers in Eucalyptus with emphasis on species identification. Environment Control in Biology, Tokyo, 47 (1): 1-11.
- Jones, R., McKinnon, G., Potts, B. and Vaillancourt, R. 2005. Genetic diversity and mating system of an endangered tree Eucalyptus morrisbyi. Austra J Bot 53: 367-377. https://doi.org/10.1071/BT04182.
- Jones, M., Shepherd, M., Henry, R. and Deves, A. 2008. Pollen flow in Eucalyptus grandis determined by paternity analysis using microsatellite markers. Tree Genet. Geno. 4: 37–47. https://doi.org/10.1007/s11295-007-0086-0.
- Kolliker, R., Jones, E. Jahufer, M. and Forster, J. 2001. Bulked AFLP analysis for the assessment of genetic diversity in white clover (Trifolium repens L.). Euphytica, 121(3): 305–315. Retrieved from ://000171802500012
- Leite, V., Santos O., Sagawa, C., Gonzalez, E., Fagundes, M., Oda, S. and Marino, C. 2011. Identification of genomic regions related to early flowering in Eucalyptus. BMC Proceedings, 5(7):53. http://doi.org/10.1186/1753-6561-5-S7-P53
- Mellish, A., Coulman, B. and Ferdinandez, Y. 2002. Genetic Relationships among Selected Crested Wheatgrass Cultivars and Species Determined on the Basis of AFLP Markers. Crop Science, 42(5): 1662–1668. http://doi.org/10.2135/cropsci2002.1662
- Michelmore, R., Paran, I. and Kesseli, R. 1991. Identification of markers linked to disea- se-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using se- gregating populations. Proceedings of the National Academy of Sciences of the United States of America, 88(21): 9828–32. http://doi.org/10.1073/pnas.88.21.9828
- Mora, F., Arriagada, O., Ballesta, P. and Ruiz, E. 2016. Genetic diversity and population structure of a drought-tolerant species of Eucalyptus, using microsatellite markers. J. Plant Biochem. Biotechnol.1-8 . https://doi.org/10.1007/s13562-016-0389-z
- Najimi, B., Boukhatem, N., Jaafri, S., Jlibène, M., Paul, R. and Jacquemin, J. 2002. Amplified fragment length polymorphism (AFLP) analysis of markers associated with H5 and H22 Hessian fly resistance genes in bread wheat. Biotechnol Agron Soc Environ 6: 79-85.
- Payn, K., Dvorak, W., Janse, B. and J, Myburg, A. 2008. Microsatellite diversity and genetic structure of the commercially important tropical tree species Eucalyptus urophylla, endemic to seven islands in eastern Indonesia. Tree Genet Gen 4: 519-530. https://doi.org/10.1007/s11295-007-0128-7
- Poltri, S., Zelener, N., Traverso, J., Gelid, P., and Hopp, H. 2003. Selection of a seed orchard of Eucalyptus dunnii based on genetic diversity criteria calculated using molecular markers.Tree Physiology, 23(9): 625–32. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12750055. ; https://doi.org/10.1093/treephys/23.9.625