Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Desempeño de la fotosíntesis y disminución en el potencial hídrico de las hojas de Lima Tahití afectadas por Wood pocketDesempeño de la fotosíntesis y disminución en el potencial hídrico de las hojas de Lima Tahití afectadas por Wood pocket

Photosynthesis performance and leaf water potential impairments of Tahiti Lime affected by Wood pocket



Cómo citar
Rodríguez Polanco, E., García, J., & Orduz, J. (2020). Desempeño de la fotosíntesis y disminución en el potencial hídrico de las hojas de Lima Tahití afectadas por Wood pocketDesempeño de la fotosíntesis y disminución en el potencial hídrico de las hojas de Lima Tahití afectadas por Wood pocket. Temas Agrarios, 25(2), 153-165. https://doi.org/10.21897/rta.v25i2.2295

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Eleonora Rodríguez Polanco
Jairo García
Javier Orduz

La muerte progresiva de los árboles de lima Tahiti en etapa productiva fue ocasionada por la fisiopatía Wood pocket (WP) observada en la región productora del centro-norte del Tolima (Colombia) en 2012, lo que provocó un detrimento significativo en la producción de frutos del 79,98% en relación con el año 2011. La presencia y nivel de daño causado por WP se ha asociado a condiciones de clima cálido seco relacionado principalmente con altas temperaturas, condición similar a la que ocurre en esta zona productora. Se sabe poco sobre las causas de la disminución del intercambio gaseoso y el potencial hídrico de las hojas en plantas afectadas por WP, por lo tanto, este estudio tuvo como objetivo investigar las relaciones entre los parámetros fisiológicos (potencial hídrico foliar e intercambio de gases foliar) de las plantas de lima de Tahití con síntomas de WP con las condiciones hidrodinámicas y humedad del suelo en la región de cultivo de Lima. El efecto de WP y las condiciones hidrodinámicas y humedad del suelo, sobre los parámetros fotosintéticos y el potencial hídrico foliar se determinó en un ensayo experimental en una plantación comercial de Lima Tahití ubicada en el municipio de Flandes. Los valores en parámetros fotosintéticos y potencial hídrico foliar incluso en plantas sanas fueron inferiores a los reportados para esta especie y la presencia de WP los disminuyo en mayor proporción. Nuestros resultados indicaron que las propiedades hidrodinámicas, la baja disponibilidad de agua en este suelo y las condiciones climáticas son favorables para el desarrollo de WP. Planteamos la hipótesis de que el constante déficit hídrico y las altas temperaturas provocan la rotura de las traqueidas y la cavitación en el xilema deteriorando el sistema vascular provocando la muerte de la madera o WP.


Visitas del artículo 812 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Agronet. 2018. Red de Información y comunicación estratégica del sector agropecuario – AGRONET Colombia. Ministerio de Agricultura y Desarrollo Rural. https://www.agronet.gov.co/estadistica [accesado 1 marzo 2018]
  2. Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., and Mcdowell, N.A. 2010. Global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259:660-684. Doi: 10.1016/j.foreco.2009.09.001
  3. Anderegg, W.R.L. 2015. Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytol 205:1008–1014. Doi: 10.1111/nph.12907ASAE, Standards. 1992. S 313.4. Soil cone penetrometer. St. Joseph. 611p.
  4. Azcón, J., and Talon, M. 2008. Fundamentos de fisiología vegetal, segunda/Ed. Mc Graw Hill/Interamericana de España.
  5. Berger, S., Sinha, A.K., and Roitsch, T. 2007. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. Journal of Experimental Botany, 58(15–16), 4019–4026. Doi:10.1093/jxb/erm298
  6. Bispo, W. M. S., Araujo, L., Moreira, W. R., Silva, L.D. and Rodrigues, F. A. 2016 a. Differential leaf gas exchange performance of mango cultivars infected by different isolates of Ceratocystis fimbriata. Scientia Agricola, 73 (2), 150-158. Doi: 10.1590/0103-9016-2015-0022
  7. Bispo, W. M. S., Araujo, L., Cacique, I. S., DaMatta, F. M. and Rodrigues, F. A. 2016 b. Photosynthesis impairments precede noticeable changes in leaf water status of mango plants infected by Ceratocystis fimbriata. European Journal of Plant Pathology, 146, 419-432. Doi:10.1007/s10658-016-0928-4
  8. Calavan, E.C. 1957. Wood Pocket disease of lemons and seedless limes. Citrograph 42: 265-268, 300-304.
  9. Cochard, H., and Delzon, S. 2013. Hydraulic failure and repair are not routine in trees. Annals of Forest Science 70:659-661. Doi: 10.1007/s13595-013-0317-5
  10. Corporación Autónoma Regional del Tolima (Cortolima). 2006. Plan de ordenación y manejo de la cuenca mayor del río Coello. https://www.cortolima.gov.co/estudios [accesado 5 febrero2018]
  11. Corrales, A., 2002. Manual ilustrado para la producción de cítricos en Colombia. Asocítricos. Ministerio de Agricultura y Desarrollo Rural. Convenio MADR- Asocítricos 167 pp Departamento Administrativo Nacional de Estadística (DANE). 2015. Boletín mensual INSUMOS Y FACTORES ASOCIADOS A LA PRODUCCIÓN AGROPECUARIA [accesado 1 marzo 2018].
  12. FAO. 2006. Evapotranspiración del cultivo. Guías para la determinación de los requerimientos de agua de los cultivos. Bol. No. 56. Roma. Fawcet, HS., and Calavan, E.C. 1947. Wood pocket, a newly reported disease of lemons. Phytopathology 37:843.
  13. Hernández, D.R., Mateus, D., and Orduz, J.O. 2014. Características climáticas y balance hídrico de la lima ácida Tahití (Citrus latifolia Tanaka) en cinco localidades productoras de Colombia. Revista Colombiana de Ciencias Hortícolas, 8(2): 217-229.
  14. Hoffmann, W.A., Marchin, R.M., Abit, P., and Lau, O.L. 2011. Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Glob Change Biol 17:2731-2742. Doi: 10.1111/j.1365-2486.2011.02401.x
  15. ICA, 2011. Muestreo fitosanitario de los cítricos en el Tolima. Informe de actividades. Semestre B de 2011. Gerencia seccional Tolima, Área de protección vegetal.
  16. INIFAP, 2013. Simposio internacional sobre HLB en cítricos ácidos. http::///D:/Descargas/4126%20Memoria%20Simposio%20HLB%20en%20citricos%20acidos%20(1).pdf. [acessado 15 febrero 2018]
  17. Instituto Geográfico Agustín Codazzi (IGAC). 2004. Estudio general de suelos y zonificación de tierras departamento de Tolima [Memoria técnica]. Bogotá, Colombia.
  18. Jdey, A., Slama, I., Rouached, A., and Abdelly, C. 2014. Growth, Na+, K+, osmolyte accumulation and lipid membrane peroxidation of two provenances of Cakile maritima during water deficit stress and subsequent recovery. Flora 209, 54–62. Doi: 10.1016/j.flora.2013.10.002
  19. King, C. A., Purcell, L. C., and Brye, K. R. 2009. Differential wilting among soybean genotypes in response to water deficit. Crop Sci. 49, 290–298
  20. Machado, E.C., Quaggio, J.Á., Lagoa, A.M., Ticelli, M., and Furlani, P.R. 1994. Trocas gasosas e relacaoes hídricas em laranjeiras com clorose variegada dos citros. Rev. Bras. Fisiol. Veg. 6, 53–57.
  21. Mcdowell, N.G., Pockman, W.T., and Allen, C.D. 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist 178:719-739.
  22. Mcdowell, N.G. 2011. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology 155:1051-1059.
  23. Mcqueen, I.S., and Miller, R.F. 1968. Calibration and evaluation of a wide-range gravimetric method for measuring moisture stress. Soil Science, 106 (3): 225-231.
  24. Medina, CL. 2003. Fisiologia da produção. In: Mattos JR, De Negri JD, Figueiredo JO. (Ed.). Lima ácida Tahiti. Campinas: Instituto Agronômico. p. 67-80.
  25. Morgan, J. W. 1984. Osmoregulation and water stress in higher plants. Annu. Rev. Plant Physiol. 35: 299–319.
  26. Nio, SA., Cawthray, G.R., Wade, L.J., and Colmer, T.D. 2011. Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage. Plant Physiol Biochem 49: 1126–1137.
  27. Ríos, L., Correa J.F., Rojas, C.A., and Dorado, D.Y. 2018. Caracterización edafoclimática de la zona productora de lima ácida Tahití (Citrus latifolia Tanaka) en el Tolima (Colombia), afectada por una fisiopatía. Ciencia y Tecnología Agropecuaria,19 (3):545-567.
  28. Ríos, L., Chaali, N., Jaramillo, C.I., Ouazaa, S., Correa, J.F. 2020. Irrigation and nutrition as criteria for adequate management of Tahiti acid lime trees affected by a physiological disorder in tropical conditions. Scientia Horticulturae, 270 (2020) 109438. Doi: 10.1016/j.scienta.2020.109438
  29. Rodríguez, D., Murcia, N., and Martinez, M. 2017. Variabilidad genética de Limas ácidas con marcadores Microsatélites Amplificados al Azar (RAMs) en Colombia. En Memoria. V simposio Internacional de Fruticultura tropical y subtropical IX simposio internacional de Piña. FRUTICULTURA
  30. Rodríguez, E., Gutierrez, J.S., Orduz, J.O. 2018. Diagnostico nutricional del cultivo de la lima ácida Tahití [Citrus latifolia (Yu Tanaka) Tanaka] en el departamento del Tolima (Colombia). Temas agrarios, 23 (2): 144-153.
  31. Roistacher, C. 2000. Wood Pocket - A genetic disorder. Citrograph 45 :(3):3-6.
  32. Salisbury, F.B., and Ross, CW. 2000. Fisiología de las plantas. Edit. Thomson. 3 tomos.
  33. Sánches, A., VanRaij, B., Blasco, E., Malavolta, E., Vitti, G., Cantarella, H., Quaggio, J.,Teofilo, J., De Negri, J., Rodríguez, O., Bataglia, O., 1994. Recomendaçoes de adubação e calagem para citros no Estado de São Paulo. rev. e atualizada. Laranja (Cordeirópolis) ed. especial. 27 p.
  34. Serraj, R., and Sinclair, T. R. 2002. Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ. 25: 333–341.
  35. Skirycz, A., and Inzé, D. 2010. More from less: plant growth under limited water. Current Opinion in Biotechnology 21, 197-203.
  36. Syvertsen, J.P., and Lloyd, J. 1994. Citrus. In: Schaffer B, Andersen PC (eds), Handbook of Environmental Physiology of Fruit Crops: Sub-Tropical and Tropical Crops, pp.65-99. CRC Press, Boca Raton.
  37. Tuberosa, R. 2012. Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:347, 1-26.
  38. Whiley, A.W., Searle, C., Schaffer, B., and Wolstenholme, B.N. 1999. Cool orchard temperatures or growing trees in containers can inhibit leaf gas exchange of avocado and mango. Journal of the American Society for Horticultural Science 124, 46-51.
  39. Whiteley, G.M., and Dexter, A.R. 1982. Root development and growth of oilseed, wheat and pea crops on tilled and non-tilled soil. Soil & Tillage Research, 2:379–393.
  40. Yu, G., Zhuang, J., Nakayama, K., and Jin, Y. 2007. Root Water Uptake and Profile Soil Water as Affected by Vertical Root Distribution. Plant Ecology, 189 (1), 15-30. http://www.jstor.org/stable/40212846
  41. Zhang, J. X., Nguyen, H. T., and Blum, A. 1999. Genetic analysis of osmotic adjustment in crop plants. J. Exp. Bot. 50, 291–302.

Sistema OJS 3.4.0.3 - Metabiblioteca |