Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Ácido abscísico y sacarosa afectan la formación in vitro de túberos en plantas de ñame (Dioscorea rotundata Poir.)

Abscisic acid and sucrose affect in vitro tuber formation in yam (Dioscorea rotundata Poir.) plants

Cómo citar
Suárez Padrón, I. E., & Otero, R. (2016). Ácido abscísico y sacarosa afectan la formación in vitro de túberos en plantas de ñame (Dioscorea rotundata Poir.). Temas Agrarios, 21(1), 9-17.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Isidro Elias Suárez Padrón
Rafael Otero

El túbero de ñame (Dioscorea rotundata Poir.) es una de las principales fuentes alimenticias de los pobladores de la Costa Atlántica Colombiana y la cuenca del Caribe, y su demanda ha aumentado en el mercado internacional en los últimos años; sin embargo, las técnicas convencionales de cultivo afectan la cantidad y calidad de la producción. Con el fin de ofrecer mecanismos de producción de material de siembra de ñame de buena calidad, se evaluó el efecto de tres concentraciones de sacarosa y cuatro niveles de ácido abscísico en la producción in vitro de microtúberos a partir de explantes nodales. Los tratamientos se distribuyeron con un diseño completamente al azar con ocho repeticiones por tratamiento. El análisis de varianza y la prueba de media de Duncan indicaron que tanto las variables del crecimiento de las plantas como el número de microtúberos mostraron diferencias significativas (Pr<0,05) como resultado de los niveles de ABA/sacarosa, una dosis de 60 g L-1 de sacarosa combinada con 3,0 mg L-1 de ABA indujo el mayor número de microtúberos, mientras que las plantas cultivadas en presencia de 90 g L-1 de sacarosa formaron mayor número de tallos, hojas y raíces.

Visitas del artículo 1021 | Visitas PDF


Los datos de descarga todavía no están disponibles.
  1. Acedo, V. Arradaza C. and Atilano, C. 2007. Microtuber production in Dioscorea alata L. variety “VU-2” as affected by growth regulators, Journal of Root Crops, 33(2):88-96.
  2. Anike, F. Konan, K. Olivier, K. and Dodo, H. 2012. Efficient shoot organogenesis in petioles of yam (Dioscorea spp), Plant Cell, Tissue and Organ Culture 111(3):303-313.
  3. Badr, A. Angers, P. and Desjardins, Y. 2015. Comprehensive analysis of in vitro to ex vitro transition of tissue cultured potato plantlets grown with or without sucrose using metabolic profiling technique, Plant Cell Tissue and Organ Culture 122(2): 491-508.
  4. Balogun, M. 2009. Microtubers in yam germplasm conservation and propagation: The status, the prospects and the constraints, Biotechnology and Molecular Biology Reviews, 4(1):1-10.
  5. Bansal, A. Kumari, V. Taneja, D. Sayal, R. and Das, N. 2012. Molecular cloning and characterization of granule-bound starch synthase I (GBSSI) alleles from potato and sequence analysis for detection of cisregulatory motifs, Plant Cell Tissue and Organ Culture 109(2): 247-261.
  6. Bruno, M. Beyer, P. and Al-Babili, S. 2015. The potato carotenoid cleavage of B-ionone ring-containing carotenes and nonepoxidated xanthophylls, Archives of Biochemistry and Biophysics 572:126-33.
  7. Cabrera, M. Gómez, R. Espinosa, E. López, J. Medero, V. Basail, M. and Arletys, A. 2011. Yam (Dioscorea alata L.) microtuber formation in Temporary Immersion System as planting material, Biotecnología Aplicada 28: 268-271.
  8. Cereda, M. 2002. Importancia, modo de consumo e perspectiva para raíces e tuberculos horticolas no Brasil, In: Carmo, C,A, Inhame e taro: sistema de produção familiar, Vitoria: Instituto Capixaba de pesquisa, asistencia Técnica e Extensao Rural, Brasil, p23-32.
  9. Chen, F. Fu, Y. Wang, D. Gao, X. and Wang, L. 2007. The effect of plant growth regulators and sucrose on the micropropagation and microtuberization of Dioscorea nipponica Makino, Journal of Plant Growth Regulator 26(1):38-45.
  10. Dai, Z. Meddar, M. Renaud, C. Merlin, I. Hilbert, G. Delrot, S. and Gomès, E. 2014. Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation, Journal of Experimental Botany 65(16):4665-4677.
  11. Deroles, S. Seelye, J. Javellana, J. and Mullan, A. 2010. In vitro propagation of Sandersonia aurantiaca Hook using thidiazuron, Plant Cell Tissue and Organ Culture 102(1): 115-119.
  12. Guo, L. Yu, L. Fan, Y. Lu, Neng, Yin, M. Zhang, F. and Yang, Q. 2010. Cloning and characterization of a potato TFL1 gene involved in tuberization regulation, Plant Cell Tissue and Organ Culture103(1): 103-109.
  13. Hayashi, Y. Takahashi, K. Inoue, S. and Kinoshita, T. 2014. Abscisic acid suppresses hypocotyl elongation by dephosphorylating plasma membrane H(+)-ATPase in Arabidopsis thaliana, Plant Cell Physiology 55(4): 845-853.
  14. Hu, Y. Li, Y. Zhang, J. Liu, H. Tian, M. and Huang, Y. 2012. Binding of ABI4 to a CACCG motif mediates the ABA-induced expression of the ZmSSI gene in maize (Zea mays L.) endospem, Journal of Experimental Botany 63(16): 5979-5989.
  15. Jang-Ho. 2015. The laccase promoter of potato confers strong tuber-specific expression in transgenic plants, Plant Cell Tissue and Organ Culture 120(1):57-68.
  16. Jean, M. and Cappodocia, M. 1991. In vitro tuberization in Dioscorea alata L. “Brazo fuerte” y “Florido” y D. abbyssinica. Hoch. Plant Cell Tissue and Organ Culture 26:147-152.
  17. Karmoker, J. and Van Steveninck, R. 1979. Stimulation of volume flow and ion flux by abscisic acid in excised root systems of Phaseolus vulgaris L. CV Redland Pioneer, Physiologia Plantarum 141(1):37-43.
  18. Lema-Ruminska, J. Goncerzewicz, K. and Gabriel, M. 2013. Influence of Abscisic Acid and Sucrose on Somatic Embryogenesis in Cactus Copiapoa tenuissima Ritt, Forma mostruosa, The Scientific World Journal 2013ID513985 7p.
  19. López, O. 2015. Inducción de estructuras vegetativas de caña flecha (Gynerium sagitatum Aubl.) in vitro, Tesis Licenciado en Ciencias Naturales, Universidad de Córdoba, Montería, 40p.
  20. McKoy, M. Thomas, P. Asemota, H. Omoruyi, F. and Simon, O. 2014. Effects of Jamaican bitter yam (Dioscorea polygonoides) and diosgenin on blood and fecal cholesterol in rats, Journal of Medicine Food 17(11): 1183.
  21. Muñiz-Garcia, M. Stritzler, M. and Capiati, D. 2014. Heterologous expression of Arabidopsis ABF4 gene in potato enhances tuberization through ABA-GA crosstalk regulation, Planta 239(3): 615- 631.
  22. Murashige, T. and Skoog, F. 1962. A revised medium for proper growth and bioassays with tobacco tissue culture, Physiologia Plantarum 15:473-497.
  23. Ncube, B. Finnie, J. and Van, J. 2014. Carbonnitrogen ratio and in vitro assimilate partitioning patterns in Cyrtanthus guthrieae L. Plant Physiology and Biochemistry 74:246-254.
  24. Ng, S. 1988. In vitro tuberization in white yam (Dioscorea rotundata Por.), Plant Cell Tissue and Organ Culture14:121-128.
  25. Olivier, K. Honan, K. Anike, F. Agbo, G. and Dodo, H. 2012. In vitro induction of minitubers in yam (Dioscorea cayenensis – D. rotundata complex), Plant Cell Tissue and Organ Culture 109(1):179-189.
  26. Ondo, P. Kevers, C. and Dommes, J. 2009. Effects of reducing sugar concentration on in vitro tuber formation and sprouting in yam (Dioscorea cayenensis – D. rotundata complex), Plant Cell Tissue and Organ Culture 99:55–59.
  27. Perea, M. and Buitrago G. 2000. Aplicación de la Biotecnología Agrícola al cultivo del Ñame, En: producción de semillas por Biotecnología, Universidad Nacional de Colombia, Bogotá D.C. Colombia, p17- 19.
  28. Prat, S. 2010. Hormonal and day length control of potato tuberisation, Plant Hormones, Madrid, p574-596.
  29. Rayirath, U. Lada, R. Caldwell, C. Asiedu, S. and Sibley, K. 2011. Role of ethylene and jasmonic acid on rhizome induction and growth in rhubarb (Rheum rhabarbarum L.), Plant Cell Tissue and Organ Culture 105(2): 253-263.
  30. Rêgo, T. Ash, L. Pessoa, L. Feijo, M. Leite, J. Dos santos Ade, S. Da Costa, C. and Boaventura, G. 2014. The intake of yam (Dioscorea bulbifera Linn.) attenuated the hyperglycemia and the bone fragility in female diabetic rats. Nutrition Hospital 29:370.
  31. Rook, F. Hadingham, S. Li, Y. and Bevan, M. 2006. Sugar and ABA response pathways and the control of gene expression, Plant Cell and Environment 29:426–434.
  32. Salazar, R. and Beltrán, J. 2003. Microtuberización en ñame (Dioscorea alata L.) var. “Pico de Botella”, Revista Colombiana de Biotecnología 4(2):27- 32.
  33. Schussler, J. Brenner, M. and Brun, W. 1984. Abscisic Acid and Its Relationship to Seed Filling in Soybeans, American Society of Plant Biologists, Plant Physiology 76(2): 301-306.
  34. Scott, G. Rosegrant, M. and Ringler, C. 2006. Roots and tubers for the 21st Century: Trends, projections, and policy options, Food Agriculture and the Environment Discussion 31, Washington, DC: International Food Policy Research Institute (IFPRI) and International Potato Center (CIP), Lima, p1-63.
  35. Sharma, P. Pandey, A. Bhattacharya, A. Nagar, P. and Ahuja, P. 2004. ABA associated biochemical changes during somatic embryo development in Camellia sinensis (L.) O. Kuntze. Plant Physiology 161:1269-1276.
  36. Suárez, I. Torres, L. and Litz R. 2011. Somatic embryogenesis in yam (Dioscorea rotundata), Revista Facultad Nacional de Agronomía Medellín 64(2):6037-6042.
  37. Tamiru, M. Becker, H. and Maass, B. 2008. Diversity, distribution and management of yam landraces (Dioscorea spp.) in Southern Ethiopia, Genetic Resources Crop Evolution 55:115-131.
  38. Wang, Z. Shen, J. Ludewing, U. and Neumann, G. 2015. A re-assessment of sucrose signaling involved in cluster-root formation and function in phosphatedeficient white lupin (Lupinus albus), Physiologia plantarum 154(3):407-419.
  39. Yan, H. Yang, L. and Li, Y. 2011. Axilliary shoot proliferation and tuberization of Dioscorea fordii Prainet Burk. Plant Cell Tissue and Organ Culture 154(2): 193- 198.

Sistema OJS - Metabiblioteca |