Diversidad genética de ibias (Oxalis tuberosa Molina) y cubios (Tropaeolum tuberosum Ruíz y Pavón) en Boyacá
Genetic diversity of ibias (Oxalis tuberosa Molina) and cubios (Tropaeolum tuberosum Ruíz y Pavón) in Boyacá
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Mostrar biografía de los autores
La región andina es considerada un área que alberga una gran diversidad de especies entre ellas las raíces y tubérculos andinos como las ibias (Oxalis tuberosa Molina) y los cubios (Tropaeolum tuberosum Ruíz y Pavón), los cuales constituyen un componente básico de la dieta de las comunidades rurales. Sus tubérculos presentan altos contenidos de metabolitos primarios y secundarios que les confiere propiedades antibióticas, antioxidantes insecticidas, nematicidas, anticancerígenas y diuréticas. Teniendo en cuenta su enorme potencial y que en Boyacá no existen estudios de diversidad genética en estas especies se planteó la caracterización molecular de 10 materiales de ibias y 11 de cubios procedentes de los municipios de Soracá, Ventaquemada, Tuta, San Pedro de Iguaque y el Puente de Boyacá. El análisis mediante el coeficiente de NeiLi diferenció a la población en dos grandes grupos de acuerdo a las características morfológicas del tubérculo y a la especie. La heterocigosidad promedio estimada fue de 0,41 y un coeficiente de diferenciación genética de 0,15. Los resultados obtenidos en este estudio mostraron la existencia de una variabilidad genética a nivel intraespecífico y flujo genético entre las dos especies evaluadas lo cual puede ser aprovechado en esquemas de mejoramiento tendientes a la producción de híbridos y la explotación de los efectos heteróticos.
Palabras clave:
Visitas del artículo 1811 | Visitas PDF
Descargas
- Aguirre, S., Piraneque, N. y Pérez, I. 2012. Sistema de producción de tubérculos andinos en Boyacá, Colombia. Cuadernos de Desarrollo Rural 9 (69): 257-273.
- Arbizu, C. y Tapia, M. 1992. Tubérculos andinos. En: J. Hernández y J. León. (eds.). Cultivos marginados: otra perspectiva de 1492. FAO, Roma, p. 147-161.
- Arias, C., e Higuera, M. 2011. Análisis y comparación de los glucosinolatos presentes en diferentes accesiones de cubio (Tropaeolum tuberosum) para evaluar su uso potencial en el control del patógeno de la papa Spongospora subterránea. Tesis de maestría, Universidad Nacional de Colombia, Bogotá.
- Bradbury, E. and Emshwiller, E. 2011. The role of organic acids in the domestication of Oxalis tuberosa: a new model for studying domestication resulting in opposing crop phenotypes. Economic Botany 65(1): 76- 84.
- Cara, N., Marfil, C. and Masuelli, R. 2013. Epigenetic patterns newly established after interspecific hybridization in natural populations of Solanum. Ecology and Evolution 3(11): 3764-3779.
- Chirinos, R., Campos, D., Costa, N., Arbizu, C., Pedreschi, R. and Larondelle Y. 2008 a. Phenolic profiles of Andean mashua (Tropaeolum tuberosum Ruíz and Pavón) tubers: Identification by HPLC-DAD and evaluation of their antioxidant activity. Food Chemistry 106(3): 1285-1298.
- Chirinos, R., Campos, D., Warnier, M., Pedreschi, R., Rees, J. and Larondelle, Y. 2008 b. Antioxidant properties of mashua (Tropaeolum tuberosum) phenolic extracts against oxidative damage using biological in vitro assays. Food Chemistry 111 (1): 98-105.
- Chirinos, R., Rogez, H., Campos, D., Pedreschi, R. and Larondelle, Y. 2007. Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz y Pavón) tubers. Separation and Purification Technology 55(2): 217-225.
- Cui, H., Sun, Y., Deng, J. and Xia, G. 2015. Chromosome elimination and introgression following somatic hybridization between bread wheat and other grass species. Plant Cell Tissue and Organ Culture 120(1): 203-210.
- Dellaporta, S., Wood, J. and Hicks, J. 1983. A plant DNA minipreparation: Versión II. Plant Molecular Biology Reporter 14(1):19-21.
- Emshwiller, E., Theim, T., Grau, A., Nina, V. and Terrazas, F. 2009. Origins of domestication and polyploidy in oca (Oxalis tuberosa; Oxalidaceae). 3. AFLP data of oca and four wild, tuber-bearing taxa. American Journal of Botany 96(10): 1839-1848.
- Hershkovitz, M., Hernández, C. and Arroyo, M. 2006. Ribosomal DNA evidence for the diversification of Tropaeolum sect. Chilensia (Tropaeolaceae). Plant Systematics and Evolution 260(1): 1-24.
- Jiménez, M., Rossi, A. and Sammán N. 2015. Health properties of oca (Oxalis tuberosa) and yacon (Smallanthus sonchifolius). Food Functions 6(10): 3266-3271.
- Leguizamo, M. 2015. Colecta, caracterización morfológica y molecular de tubérculos andinos ibias (Oxalis tuberosa) y cubios (Tropaeolum tuberosum) en el departamento de Boyacá. Tesis de pregrado, Universidad Pedagógica y Tecnológica de Colombia, Tunja.
- Malice, M. 2009. Genetic diversity and structure of three Andean tubers: Oxalis tuberosa Molina, Ullucus tuberosus Caldas and Tropaeolum tuberosum Ruiz and Pav. Thesis of PhD. Agricultural University, Belgium.
- Malice, M., Bizoux, J., Blas, R. and Baudoin J. 2010. Genetic diversity of Andean tuber crop species in the in situ microcenter of Huanuco, Perú Crop Science 50(5): 1915-1923.
- Malice, M., Martin, N., Pissard, A., Rojas, J., Gandarillas, A., Bertin, P. and Baudoin, J. 2007. A preliminary study of the genetic diversity of Bolivian oca (Oxalis tuberosa Mol.) varieties maintained in situ and ex situ through the utilization of ISSR molecular markers. Genetic Resources Crop Evolution 54(4): 685-690.
- Manrique, I., Arbizu, C., Vivanci, F., González, R., Ramírez, C., Chávez, O., Tay, D. y Elís, D. 2013. Tropaeolum tuberosum Ruíz and Pav. Colección de germoplasma de mashua conservada en el Centro Internacional de la Papa (CIP). Primera Edición. Centro Internacional de la Papa, La Molina, Perú, p. 34-77.
- Marfil, C., Masuelli, R., Davison, J. and Comai, L. 2006. Genomic instability in Solanum tuberosum, Solanum kurtzianum interspecific hybrids. Genome 49(2):104– 113.
- Monteros, A., Mazo, N. y Castillo, R. 1997. Estudio de la variación morfológica e isoenzimática de 78 entradas de mashua (Tropaeolum tuberosum) en Santa Catalina, INIAP. Quito, Ecuador, p. 34.
- Morillo, A., Morillo, Y. and Pinzón H. 2015. Molecular characterization of the plum collection (Prunus domestica L. Borkh) of the Pedagogical and Technological University of Colombia. African Journal of Biotechnology 14(3): 257-263.
- Moscoe, L., Blas, R., Huamán, D., Modesto, M. and Emshwiller, E. 2016. Genetic basis for folk classification of oca (Oxalis tuberosa Molina; Oxalidaceae): implications for research and conservation of clonally propagated crops. Genetic Resources and Crop Evolution 63(1): 1-21.
- Navarro, C., Bolaños, L. y Lagos, T. 2010. Caracterización morfoagronómica y molecular de 19 genotipos de papa guata y chaucha (Solanum tuberosum L. y Solanum phureja Juz et Buk) cultivados en el departamento de Nariño. Revista de Agronomía 27(1): 27-39.
- Nei, M. and Li, W. 1979. Mathematical model for studying genetic variation in terms of restriction endonuclease. Proceedings of the National Academy Sciencies 79(10): 5267 – 5273.
- Onamu, R., Solano, P., Castellano, J., Rodríguez, J. y Pérez, N. 2015. Diversidad genética entre variedades de papa (Solanum tuberosum L.) cultivadas en México. Revista Fitotecnia Mexicana 38(1): 7-15.
- Piñeros, N. y Ñústez, l. 2004. Evaluación de la variabilidad genética de la colección de cubio (Tropaeolum tuberosum Ruíz and Pavón) reporte de investigación, Universidad Nacional de Colombia, Bogotá, p.15.
- Pissard, A., Arbizu, C., Ghislain, M. and Bertin, P. 2008a. Influence of the geographical provenance on the genetic structure and diversity of the vegetatively propagated Andean tuber crop, mashua (Tropaeolum tuberosum), highlighted by ISSR markers and multivariate analysis methods. International Journal. Plant Sciences 169(9):1248–1260.
- Pissard, A., Arbizu, C., Ghislain, M., Faux, A., Paulet, S. and Bertin, D. 2008b. Congruence between morphological and molecular markers inferred from the analysis of the intramorphotype genetic diversity and the spatial structure of Oxalis tuberosa Molecular Genetics 132(1):71–85.
- Pissard, A., Rojas, J., Faux, A., Paulet, S. and Bertin, P. 2008c. Evidence of intra-varietal genetic variability in the vegetatively propagated crop oca (Oxalis tuberosa Mol.) in the Andean traditional farming system. Plant Systematics and Evolution 270(1-2):59–74.
- Pissard, A., Ghislain, M. and Bertin, P. 2006. Genetic diversity of the Andean tuberbearing species, oca [Oxalis tuberosa Mol.], investigated by inter-simple sequence repeats. Genome 49(1):8–16.
- Ponce, R. 2013. Caracterización molecular de las variedades de papas cultivadas (Solanum spp.) más importantes del Perú mediante el uso de microsatélites. Tesis de pregrado, Universidad Nacional Mayor de San Marcos, Lima, Perú.
- Rapp, R. and Wendel, J. 2005. Epigenetics and plant evolution. New Phytopathology 168(1):81–91.
- Rivera, G. 2010. Elaboración y valoración nutricional de tres productos alternativos a base de mashua para escolares del proyecto Runa Kawsay. Tesis de Pregrado. Escuela Superior Politécnica de Chimborazo, Ecuador.
- Rosero, M. 2010. Colección, caracterización y conservación de variabilidad genética de oca (Oxalis tuberosa Mol.) en agroecosistemas paramunos del departamento de Nariño-Colombia. Tesis de Maestría, Universidad Nacional de Colombia, Palmira.
- Veramendi, S., Cadima, X. and Gabriel, J. 2013. Integración molecular y morfológica para la formación de la Colección Núcleo de papa de Bolivia. Revista Latinoamericana de la Papa 17 (2): 23-39.
- Wang, J., Jiang, J. and Wang, Y. 2013. Protoplast fusion for crop improvement and breeding in China. Plant Cell Tissue and Organ Culture 112(2): 131-142.
- Wen, L., Shih, H., Weng, I., Zhu, Ya., Tsai, C., Chou, C. and Chiang, Y. 2016. Characterization of Genomic Inheritance of Intergeneric Hybrids between Ascocenda and Phalaenopsis Cultivars by GISH, PCR-RFLP and RFLP. PLoS ONE 11(4): 1-14.
- Wright, S. 1978. Evolution and the genetics of populations, variability within and among natural populations, Vol 4. University of Chicago Press. Chicago, p. 144.